• Title/Summary/Keyword: SCALED 모델

Search Result 252, Processing Time 0.027 seconds

Development of a Dynamically Scaled Model of the Catenary for High Speed Railway (고속전철 가선계의 축소모델 개발에 관한 연구)

  • Kim, Jung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.4
    • /
    • pp.409-413
    • /
    • 2007
  • A dynamically scaled model of the catenary with a nominal scaling factor of 18.5:1 is designed and constructed. The motivation for developing such a model is the great difficulty of making accurate measurements on the full-scale catenary and the difficulty of making experimental modifications to it. The scaled model is designed to be dynamically equivalent to the full scale catenary with respect to the mass and elastic strength. The scaled model is partially verified by comparing linear vibration and wave characteristics with those predicted by the simulation study.

A Study on Deduction and Characteristic Analysis of Magnetic Equivalent Circuit Parameters of a Rotary-typed Small-scaled LIM for a Railway Transit (철도차량용 선형유도전동기 축소-회전형모델의 자기등가회로 파라미터 도출 및 특성 분석 연구)

  • Park, Chan-Bae;Lee, Hyung-Woo;Lee, Byung-Song
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.404-411
    • /
    • 2010
  • Authors conducted a deduction and characteristic calculation of the some parameters using a magnetic equivalent circuit method to verify a basic design result of a rotary-typed small-scaled linear induction motor for a railway transit. In a LIM, it is possible to express the parameters of the magnetic equivalent circuit into a function of the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. It means that the LIM properties can be changed considerably by the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. So, authors analyzed a tendency of changes of the magnetic equivalent circuit parameters and the LIM characteristics by changing of the airgap, the thickness of the secondary aluminium plate and the overhang length and shape of a rotary-typed small-scaled LIM, and accomplished a basic research to develop a real-scaled LIM for a railway transit.

Evaluation of Peak Overpressure and Impulse Induced by Explosion (폭발에 따른 최대과압 및 충격량 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.28-34
    • /
    • 2016
  • Empirical model, phenomenological model, and CFD model have been used to evaluate the blast effects produced by explosion of explosives, flammable gas and liquid or dust. TNT equivalence method which is one of empirical models has been widely used as it is simple. In this study, new peak overpressure-scaled distance and scaled impulse-scaled distance equations are induced through fitting data from the curves given by TNT equivalence method. If the TNT equivalent mass is calculated, it is possible to estimate the peak overpressure and impulse using the regression equations. Differences of peak overpressure with yield factor which is a component of TNT equivalence method are found to be great in near-by distances from explosion source where the increase in overpressure is very steep, but the differences are getting smaller as the distances increase.

Design of KUH Main Rotor Small-scaled Blade (KUH 주로터 축소 블레이드 설계)

  • Kim, Do-Hyung;Kim, Seung-Ho;Han, Jung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.32-41
    • /
    • 2009
  • In this study, scale-down design of full-scale Korean Utility Helicopter (KUH) main rotor blade has been investigated. The scaled model system were designed for the measurement of aerodynamic performance, tip vortex and noise source. For the purpose of considering the same aerodynamic loads, the Mach-scale method has been applied. The Mach-scaled model has the same tip Mach number, and it also has the same normalized frequencies. That is, the Mach-scaled model is analogous to full-scale model in the view point of aerodynamics and structural dynamics. Aerodynamic scale-down process could be completed just by adjusting scaling dimensions and increasing rotating speed. In the field of structural dynamics, design process could be finished by confirming the rotating frequencies of the designed blade with the stiffness and inertial properties distributions produced by sectional design. In this study, small-scaled blade sectional design were performed by applying domestic composite prepregs and structural dynamic characteristics of designed model has been investigated.

  • PDF

A Study on the Critical Speed of 1/5 Scaled Bogie Model (1/5 스케일 축소대차 모델 임계속도에 관한 연구)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;Kim, Min-Soo;You, Won-Hee;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.800-805
    • /
    • 2007
  • The critical speed of railway bogie is very important in terms of the verification of the vehicle design procedure and safety. The dynamic performance of bogie is tested on the railway roller rig in a laboratory in place of field testing on track. But, the testing on the full scale roller rig caused many problems relating to test costs, test time and has the difficulty in test condition setup. To overcome these problems, scaled models were used in the filed of railway vehicle design and test. In this paper, we have studied the critical speed of scaled bogie model. We have made the 1/5 scaled bogie, the scaled roller rig and analyzed the critical speed of the scaled bogie through the numerical simulation and running test of the scaled bogie. We have confirmed that the analysis results of the critical speed correspond with the test results.

Stability Analysis of the Inclined Pillars by Scaled Model Test (축소모형실험을 통한 편간 불일치 필라의 안정성 연구)

  • Kim, Jong-Gwan;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.508-515
    • /
    • 2016
  • In this study, we compared the stability of the pillars by using room and pillar mining method with the four models with different stiffness and pillar overlap ratio. The experimental models consist of two plaster models (overlap ratio 0%, 100%) and two cement models(overlap ratio 0%, 100%). The soft and hard rocks are modeled by plaster and cement models respectively. In these experiments, the model materials with strength values reflecting the calculated scaled factors not been used, so it is not a true scaled model test that reproduces in situ state in the laboratory. Experimental results show that the different overlap ratio pillars are one of the factors that can affect the stability of the mine.

A Comparison of Blast Load in a Simplified Analytical Model of Rigid Column (강체 기둥의 단순 해석 모델에서의 폭발 하중 비교)

  • Park, Hoon
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • The analysis methods of blast analysis models are classified into direct analysis and indirect analysis, and the latter is divided into semi-empirical and numerical analysis methods. In order to evaluate the applicability of the ELS blast analysis program, which is a program for analyzing the semi-empirical models, this study selected a simplified analytical model and examined the blast load characteristics of free-air burst explosion and surface burst explosion by using AT-Blast, RC-Blast, and Kinney and Graham's empirical equations, which are the semi-empirical analysis programs. As a result of analyzing the explosion pressure for the scaled distance and the incidence angle for the simplified analytical model, an appropriate analysis can be performed when the range of the scaled distance in the free-air burst explosion analysis was 0.3~0.461 and when the range of the scaled distance in the surface burst explosion analysis was 0.378~0.581. In terms of the incidence angle, the results analyzed within $45^{\circ}$ were considered to be appropriate.

Shaking Table Tests of a 1/4-Scaled Steel Frame with Base Isolators (1/4축소 철골구조물을 이용한 건물 기초분리장치의 진동대실험)

  • 송영훈;김진구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.39-48
    • /
    • 1997
  • New form of base isolators made of steel spring coated with both natural and artficial rubber were manufactured and tested for material properties. Shaking table experiments were performed using a model structure attached with the bearings. The model structure used in the test is a 1/4 scaled steel structure, and earthquake records were used to check the lateral and vertical stability and effectiveness of the isolators. According to the results all three types of isolators turned out to be effective in reducing the acceleration induced by the earthquake vibration.

  • PDF

An Analysis of Running Stability of 1/5 Small Scaled Bogie on Small-Scaled Derailment Simulator (소형탈선시뮬레이터상에서의 1/5 축소대차 주행안정성 해석)

  • Eom, Beom-Gyu;Kang, Bu-Byoung;Lee, Hi-Sung;Song, Moon-Shuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1413-1420
    • /
    • 2012
  • To predict the dynamics behavior, running stability, etc. of a railway vehicle and to understand its physical characteristics, analytical methods are used for the testing and manufacturing of a scale model along with numerical simulations in developed countries (England, France, Japan, etc.). The test of the dynamics characteristics of full-scale models is problematic in that it is expensive and time-consuming because an entire large-scale test plant needs to be constructed, difficulties are involved in the test configuration, etc. To overcome these problems, an analytical study involving dynamics tests and computer simulations using a scaled bogie model that applies the laws of similarity was carried out. In this study, we performed stability analysis on a 1/5 small scaled bogie for parameters such as the running speed and carbody weight by using an analysis model. Furthermore, we verified the reliability by using a small-scaled derailment simulator and examined the dynamic characteristic of the 1/5 small scaled bogie.

Scaled effect correction method for the wind turbine blade with multi airfoils (다수의 익형이 적용된 풍력터빈 블레이드에 대한 축소효과 보상기법)

  • Jo, Tae-Hwan;Kim, Cheol-Wan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.494-497
    • /
    • 2009
  • 풍력터빈 블레이드 풍동시험의 경우 사용가능한 시험설비의 크기제한으로 인해 축소모델 사용이 불가피하며, 이로 인해 풍동시험에서는 실물 블레이드에 비해 10% 미만의 낮은 Re수에서 시험이 수행된다. 축소모델 블레이드 풍동시험 결과를 활용하여 실물 블레이드의 성능(토크)를 추정하기 위한 축소효과 보정기법을 2008년 제시하였으며, NREL Phase VI 모델 시험결과에 적용하였다. 당시 제시된 보정기법은 단일익형을 전체 블레이드에 사용한 사례이며 축소효과 보정을 위해 Re수에 따른 익형의 양력계수 변화만을 적용하였다. 본 논문에서는 당시 제안된 축소효과 보정기법을 익형의 양력계수 및 항력계수를 포함한 형태로 수정하였으며, 블레이드에 다수의 익형이 사용되었을 경우에 대해 확장하였다. NREL Phase VI 12% 시험모델의 경우 익형의 양력계수 기울기에 의한 보정량은 약 15% 정도이며, 항력계수 변화에 의한 보정량은 약 5% 정도로 나타났다. 블레이드에 다수의 익형이 사용되었을 경우 설계 또는 전산해석을 통해 구한 반경별 토크 함수를 적용하여 블레이드 축소효과를 보정할 수 있다.

  • PDF