A Study on Deduction and Characteristic Analysis of Magnetic Equivalent Circuit Parameters of a Rotary-typed Small-scaled LIM for a Railway Transit

철도차량용 선형유도전동기 축소-회전형모델의 자기등가회로 파라미터 도출 및 특성 분석 연구

  • 박찬배 (한국철도기술연구원 주행추진연구실) ;
  • 이형우 (한국철도기술연구원 주행추진연구실) ;
  • 이병송 (한국철도기술연구원 주행추진연구실)
  • Received : 2009.11.25
  • Accepted : 2010.08.05
  • Published : 2010.08.26

Abstract

Authors conducted a deduction and characteristic calculation of the some parameters using a magnetic equivalent circuit method to verify a basic design result of a rotary-typed small-scaled linear induction motor for a railway transit. In a LIM, it is possible to express the parameters of the magnetic equivalent circuit into a function of the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. It means that the LIM properties can be changed considerably by the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. So, authors analyzed a tendency of changes of the magnetic equivalent circuit parameters and the LIM characteristics by changing of the airgap, the thickness of the secondary aluminium plate and the overhang length and shape of a rotary-typed small-scaled LIM, and accomplished a basic research to develop a real-scaled LIM for a railway transit.

철도차량용 선형유도전동기(Linear Induction Motor, LIM) 축소-회전형 모델의 기본 설계 결과를 검증하기 위하여 LIM의 자기등가회로법을 이용한 파라미터 도출 및 특성 계산을 수행하였다. LIM의 경우, 자기등가회로상의 파라미터는 LIM의 전기자 코어와 2차측 알루미늄 도체판의 형상 및 공극에 대한 함수로써 표현이 가능하다. 즉 전기자 코어와 2차측 알루미늄 도체판의 형상 및 공극 변경에 의해 LIM의 특성이 크게 달라질 수 있다는 것을 의미한다. 따라서 본 연구에서는 철도차량용 LIM 축소-회전형 모델의 공극, 2차측 AL-Plate의 두께, 오버행 길이, 형상 변경에 따른 LIM 축소-회전형 모델의 자기등가회로 파라미터 및 특성의 변화 추세를 분석하여, 철도차량용 실모델 LIM 개발을 위한 기초 연구를 수행하였다.

Keywords

References

  1. C.B. Park, B.S. Lee, J. Lee (2009) Dynamic Characteristics Analysis Considering the Effect of the Vortexes of Flux in a LIM for Railway Propulsion System, Journal of the Korean Society for Railway, 12(3), pp. 437-442.
  2. H.-W. Lee, S. Lee, C. Park, J. Lee, et al. (2008) Characteristic Analysis of a Linear Induction Motor for a Lightweight Train according to Various Secondary Schemes, International Journal of Railway, 1(1), pp. 6-11.
  3. Japan Subway Association (2004) Linear Metro System, Japan Subway Association, pp. 1-28.
  4. I. Boldea, S.A. Nasar (2001) Linear motion electromagnetic devices, Taylor&Francis, NY, pp. 44-72.
  5. Jacek F. Gieras (1994) Linear induction drives, Clarendon, Oxford, pp. 12-16.
  6. D.J. de Groot (1993) Dimensional analysis of the linear induction motor, IEE Proceedings-B, 140(4), pp. 273-280.
  7. R.M. Pai, Ion Boldea, S.A. Nasar (1988) A Complete Equivalent Circuit of a Linear Induction Motor with Sheet Secondary, IEEE Trans. on Magnetics, 24(1), pp. 639-654. https://doi.org/10.1109/20.43997
  8. C.-B. Park, B.-S. Lee, H.-W. Lee, S.-Y. Kwon, et al. (2008) Air-gap Control System of a Linear Induction Motor for a Railway Transit, Proceedings of the 2008 International Conference on Electrical Machines, Portugal, pp. 1-4.
  9. H.-J. Park, S.-Y. Kwon, B.-S. Lee, H.-W. Lee, et al. (2008) Development of the 750V Linear propulsion system for the urban railway application, Korea Railroad Research institute, KRRI Research 08-027.