• Title/Summary/Keyword: SC FDMA

Search Result 67, Processing Time 0.021 seconds

Transmission and reception scheme for D2D communication in LTE-Advanced environment (LTE-Advanced 환경에서 D2D 통신을 위한 송수신 기법)

  • Seo, Bangwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.83-88
    • /
    • 2016
  • We treat device-to-device direct communication (D2D) by reusing cellular uplink resources in LTE-Advanced systems. Conventional schemes assume that D2D transmitter employs SC-FDMA scheme for the date transmission. In the conventional schemes, however, it is very difficult to reduce the interference between the users, D2D communication cannot be used when the interference caused by cellular uplink signal is high. In this paper, we propose D2D transmission scheme which employes MC-CDMA technology and D2D detection scheme which uses MMSE algorithm to reduce interference from the cellular uplink signal. Therefore, in the proposed scheme the D2D communication becomes possible even in the high interference scenario. Through simulation, we show that the proposed scheme has better BER performance than the conventional scheme.

Comparisons on Diversity Techniques for SC-FDE Systems (SC-FDE 시스템에서의 다이버시티 기술 비교)

  • Rim, Min-Joong;Kim, Hong-Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10A
    • /
    • pp.964-971
    • /
    • 2008
  • This paper compares the performances of cyclic delay diversity and phase rolling techniques for SC-FDE(Single Carrier with Frequency Domain Equalization) systems with multiple transmit antennas assuming time-flat and frequency-flat channels. In OFDM(Orthogonal Frequency Division Multiplexing) systems generation of time varying channels using phase rolling can result in performance gains comparable to those of frequency-selective channels made by cyclic delay diversity However, in SC-FDE systems making time-selective channels may produce better results than creation of frequency-selective channels.

Pilot Assignment Method for the PAPR Reduction and Effective Channel Estimation in the SC-FDMA Communication System (PAPR 감소와 효과적 채널 추정을 위한 SC-FDMA 통신 시스템의 파이럿 배치 방법)

  • An, Dong-Geon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • PAPR of the pilot symbols can be reduced down by the CAZAC sequence in the SC-FDMA communication system. However, it is very complicated and takes quite a long time to compute the interpolation between the OFDM information symbols for the channel estimation because the pilot data are trasmitted in the block type. Furthermore, situation will be much more serious in the severe fading channel. Actually the pilot insertion of the comb type is much efficient and convenient for the channel estimation since the calculation of the interpolation can be made in the frequency domain symbol by symbol. But, the PAPR will be regrown when the pilot data are inserted with the information data in the comb type. So, in this paper, we like to study the PAPR reduction and comb type pilot assignment for the efficient channel estimation. Unlike the conventional SLM(selected mapping) method requiring the side information, our improved SLM method is to use the phase rotation sequence into information data without rotating phase of pilot. We use different pilot data according to the different phase rotation sequence. From the simulation result, it can be confirmed that when SLM method of 4 phase rotation sequence is used, PAPR is almost same to the block type method without pilot.

Compensation of Phase Noise and IQ Imbalance in the OFDM Communication System of DFT Spreading Method (DFT 확산 방식의 OFDM 통신 시스템에서 위상잡음과 직교 불균형 보상)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • DFT-spread OFDM(Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing) is very effective for solving the PAPR(Peak-to-Average Power Ratio) problem. Therefore, the SC-FDMA(Single Carrier-Frequency Division Multiple Access) which is basically same to the DFT spread OFDM was adopted as the uplink standard of the 3GPP LTE ($3^{rd}$ Generation Partnership Project Long Term Evolution). Unlike the ordinary OFDM system, the SC-FDMA using DFT spreading method is vulnerable to the ICI(Inter-Carrier Interference) problem caused by the phase noise and IQ(In-phase/Quadrature) imbalance and effected FDE(Frequency Domain Equalizer). In this paper, the ICI effects from the phase noise and IQ imbalance which can be problems in uplink transmission are analyzed according the back-off level of HPA. Next, we propose the equalizer algorithm to remove the ICI effects. This proposed equalizer based on the FDE can be considered as up-graded and improved version of PNS(Phase Noise Suppression) algorithm. This proposed equalizer effectively compensates the ICI resulting from the phase noise and IQ imbalance. Finally, through the computer simulation, it can be shown that about SNR=14 dB is required for the $BER=10^{-4}$ after ICI compensation when the back-off is 4.5 dB, $\varepsilon=0.005$, $\phi=5^{\circ}$, and $pn=0.06\;rad^2$.

Network Evolution Stages and Characteristics of LTE/LTE-Advanced Systems (LTE/LTE-Advanced 네트워크 발전단계 및 특성 - Network and Protocol Architectures)

  • Kim, Jeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.6
    • /
    • pp.71-76
    • /
    • 2012
  • Recently, the huge growth of mobile data traffic has driven the earlier commercialization of LTE network and the evolution of LTE-Adv has been accelerated because of this trend of mobile traffic surges. Thus it has enabled the global connectivity and roaming capability due to continual standardization activities. The 3rd generation mobile communication system has been improved through incorporating technologies of HSDPA, MBMS and HSUPA etc continuously. Also, OFDMA/SC-FDMA-based LTE standardization has been under way. In this paper, the architectures of LTE network and protocol have been introduced and their inherent operation mechanisms have also been explored in order to give some insights about the LTE/LTE-Adv networks while their architectures are considered as most prominent candidate for worldwide standard by ITU-R and mobile operators for international communication networks.

A Study on Receiving Performance Improvement of LTE Communication Network Using Multi-hop Relay Techniques (멀티-홉 릴레이 기법을 이용한 LTE 통신망 수신 성능 개선에 관한 연구)

  • Park, Chan-Hong;Jang, Sung-Won;Park, Sang-Joo;Kim, Chong-Soo;Seong, Hyeon-Kyeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.988-991
    • /
    • 2010
  • 본 논문에서는 현재 3GPP에서 진행되고 있는 차세대 이동통신 기술 표준, 즉 LTE 시스템의 하향링크 전송방식의 수신성능을 향상시키기 위해 기지국(BS)과 단말(MS) 사이에 릴레이(RS) 설치를 제안하고, BS의 위치와 설치된 RS의 거리를 각각 500m, 1000m로 하고 RS의 전송방식을 OFDMA와 SC-FDMA를 선택함으로써 수신성능을 높이기 위한 연구를 수행 하였다. 연구결과 RS의 위치가 BS와 가까울수록 RS에서는 SC-FDMA를 사용하는 것이 좋게 나왔고, 반대로 BS와 RS의 거리가 멀어질수록 RS에서는 OFDMA를 사용하는 것의 성능이 좋은 것으로 나왔다. 또한 BS와 MS 거리의 중심지역에서는 그 상황에 맞는 전송방식을 사용함으로써 시스템의 수신성능을 향상시킬 수 있었다. 본 논문에서 시뮬레이션 한 결과를 토대로 실제 LTE 시스템에 적용하였을 때, 셀 커버지지를 확장 시켜 시스템 전체의 수신성능을 향상 시킬 수 있을 것으로 보였다.

Low complexity ordered successive interference cancelation detection algorithm for uplink MIMO SC-FDMA system

  • Nalamani G. Praveena;Kandasamy Selvaraj;David Judson;Mahalingam Anandaraj
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.899-909
    • /
    • 2023
  • In mobile communication, the most exploratory technology of fifth generation is massive multiple input multiple output (MIMO). The minimum mean square error and zero forcing based linear detectors are used in multiuser detection for MIMO single-carrier frequency division multiple access (SCFDMA). When the received signal is detected and regularization sequence is joined in the equalization of spectral null amplification, these schemes experience an error performance and the signal detection assesses an inversion of a matrix computation that grows into complexity. Ordered successive interference cancelation (OSIC) detection is considered for MIMO SC-FDMA, which uses a posteriori information to eradicate these problems in a realistic environment. To cancel the interference, sorting is preferred based on signal-to-noise ratio and log-likelihood ratio. The distinctiveness of the methodology is to predict the symbol with the lowest error probability. The proposed work is compared with the existing methods, and simulation results prove that the defined algorithm outperforms conventional detection methods and accomplishes better performance with lower complication.

Analysis of BER According to Spatial and Frequency Diversity Gain in Uplink SC-FDMA with SIMO Systems (상향링크 SIMO 시스템에서 공간 및 주파수 다이버시티 이득에 따른 SC-FDMA의 BER 성능 분석)

  • Lee, Jin-Hui;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.535-547
    • /
    • 2014
  • We investigate BER (Bit Error Ratio) performance according to the gain of spatial and frequency diversities in uplink SC-FDMA of SIMO (Single Input Multiple Output) systems. The main results of the analysis in this paper are as follows. First, we prove that performance of integrated system for considering spatial and frequency diversity combining in parallel is equivalent with the performance of sequential system for performing diversity combining in sequence. By signal modeling, it is demonstrated that the performances of both systems are the same when the frequency diversity combining technique of the sequential system is equal to diversity combining technique of the integrated system, and spatial diversity combining technique of the sequential system is performed as MRC in advance of frequency diversity combining. Secondly, it is found that effect on the BER performance is different according to the gain of spatial and frequency diversities, respectively. The frequency diversity gain increases by increasing the number of subcarrier. It might affect the performance improvement of high SNR(Signal to Noise Ratio) while it maintains gap between performances of ZF(Zero Forcing) and MMSE(Minimum Mean Square Error) in frequency diversity combining schemes. Also, spatial diversity gain increases as the number of receiving antennas increases. It means that it can reduce performance gap between ZF and MMSE in frequency diversity combining schemes by increasing the number of receiving antennas. In addition, it might affect the performance improvement of the whole SNR. Finally, through the analysis of performance according to the spatial diversity gain, the performance of ZF in frequency diversity combining is equal to the MMSE if the number of receiving antennas is 6 or more.

Capacity Comparison of Two Uplink OFDMA Systems Considering Synchronization Error among Multiple Users and Nonlinear Distortion of Amplifiers (사용자간 동기오차와 증폭기의 비선형 왜곡을 동시에 고려한 두 상향링크 OFDMA 기법의 채널용량 비교 분석)

  • Lee, Jin-Hui;Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.258-270
    • /
    • 2014
  • In this paper, we investigate channel capacity of two kinds of uplink OFDMA (Orthogonal Frequency Division Multiple Access) schemes, i.e. ZCZ (Zero Correlation Zone) code time-spread OFDMA and sparse SC-FDMA (Single Carrier Frequency Division Mmultiple Access) robust to access timing offset (TO) among multiple users. In order to reflect the practical condition, we consider not only access TO among multiple users but also peak to average power ratio (PAPR) which is one of hot issues of uplink OFDMA. In the case with access TO among multiple users, the amplified signal of users by power control might affect a severe interference to signals of other users. Meanwhile, amplified signal by considering distance between user and base station might be distorted due to the limit of amplifier and thus the performance might degrade. In order to achieve the maximum channel capacity, we investigate the combinations of transmit power so called ASF (adaptive scaling factor) by numerical simulations. We check that the channel capacity of the case with ASF increases compared to the case with considering only distance i.e. ASF=1. From the simulation results, In the case of high signal to noise ratio (SNR), ZCZ code time-spread OFDMA achieves higher channel capacity compared to sparse block SC-FDMA. On the other hand, in the case of low SNR, the sparse block SC-FDMA achieves better performance compared to ZCZ time-spread OFDMA.

Iterative Self-Interference Channel Estimation for In-Band Full-Duplex Cellular Systems (대역내 전이중 셀룰러 시스템을 위한 반복적인 자기간섭 채널 추정)

  • Shin, Changyong;Ryu, Young Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.25-33
    • /
    • 2018
  • In this paper, we propose an iterative self-interference (SI) channel estimation method for in-band full-duplex cellular systems that employ orthogonal frequency division multiple access (OFDMA) on downlink (DL) and single-carrier frequency division multiple access (SC-FDMA) on uplink (UL), as in Long Term Evolution (LTE) systems. The proposed method first acquires coarse estimates of SI channels using DL signals and UL pilots, which are known to the base stations, and then refines the estimates by consecutively exploiting averaging in the frequency domain and channel truncation in the time domain. In addition, the method enhances the estimates further by iteratively executing this estimation procedure, and does not require any radio resources dedicated to SI channel estimation. Simulation results demonstrate that by significantly improving the SI channel estimation performance without requiring exact knowledge of the SI channel length, the proposed method achieves UL channel estimation performance and signal-to-interference-plus-noise ratio (SINR) performance very close to those in perfect SI cancellation.