• 제목/요약/키워드: SBRs

검색결과 27건 처리시간 0.028초

Sequencing Batch Reactor (SBR)에서 포기시간 변경에 따른 영향 (1) - 영양염류 제거 (Effects of the Variation of Aeration Time in Sequencing Batch Reactor (SBR) (1) - Nutrient Removal)

  • 정노성;박영식;김동석
    • 한국환경과학회지
    • /
    • 제20권1호
    • /
    • pp.35-47
    • /
    • 2011
  • The effect of the variation of aeration time on the removal of organics, nitrogen and phosphorus using synthetic wastewater was investigated in sequencing batch reactors (SBRs) which included DNPAOs and DNGAOs. The cycling times in four SBRs were adjusted to 12 hours and then included different aerobic times as 1 hr, 2.5 hr, 4 hr and 5.5 hr, respectively. Four SBR systems have been operated and investigated for over 40 days. Average TOC removal efficiencies were about 71 % in all SBRs. The $NH_4^+$-N removal efficiency was increased as the increase of aeration time. After changing aeration time, the total nitrogen removal efficiencies of SBRs were shown as 35 %, 85 %, 75 % and 65 %, respectively. Higher phosphorus release and uptake were occurred as the decrease of the aeration time. After all, the overall phosphorus removal efficiency decreased and the deterioration of phosphorus removal was occurred when aeration time was over 4 hr. Denitrification in aerobic conditions was observed, which showed the presence of DNPAOs and DNGAOs. In batch experiments, PAOs were shown as the most important microorganisms for the phosphorus removal in this experiment, and the role of DNGAOs was higher than that of DNAPOs for the nitrogen removal.

Morphological characteristics and nutrient removal efficiency of granular PAO and DPAO SBRs operating at different temperatures

  • Geumhee Yun;Jongbeom Kwon;Sunhwa Park;Young Kim;Kyungjin Han
    • Membrane and Water Treatment
    • /
    • 제15권1호
    • /
    • pp.1-9
    • /
    • 2024
  • Biological nutrient removal is gaining increasing attention in wastewater treatment plants; however, it is adversely affected by low temperatures. This study examined temperature effects on nutrient removal and morphological stability of the granular and denitrifying phosphorus accumulating organisms (PAO and DPAO, respectively) using sequencing batch reactors (SBRs) at 5, 10, and 20 ℃. Lab-scale SBRs were continuously operated using anaerobic-anoxic and anaerobic-oxic cycles to develop the PAO and DPAO granules for 230 d. Sludge granulation in the two SBRs was observed after approximately 200 d. The average removal efficiency of soluble chemical oxygen demand (SCOD) and PO43--P remained >90% throughout, even when the temperature dropped to 5 ℃. The average removal efficiency of NO3--N remained >80% consistently in DPAO SBR. However, nitrification drastically decreased at 10 ℃. Hence, the removal efficiency of NH4+-N was decreased from 99.1% to 54.5% in PAO SBR. Owing to the increased oxygen penetration depth at low temperatures, the influence on nitrification rates was limited. The granule in DPAO and PAO SBR was observed to be unstable and disintegrated at 10 ℃. In conclusion, morphological characteristics showed that changed conversion rates at low temperatures in aerobic granular sludge altered both nutrient removal efficiencies and granule formation.

The Rolling-Sliding Friction of Rubber and the Behavior of Contact Area

  • Uchiyama, Y.;Monden, N.;Miyao, T.;Iwai, T.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.189-190
    • /
    • 2002
  • Rolling-sliding friction was investigated for three SBR (styrene-butadiene rubber) specimens including silica-filled, HAF carbon black-filled, and SAF carbon black-filled SBR. When a rubber wheel was rolled against a glass disk, the coefficient of friction varied with the slip ratios. The coefficient of friction for the silica-tilled SBR showed the highest value of the rubber specimens examined under various slip ratios. The contact areas of silica-filled SBR were larger than those of the carbon black-filled SBRs, as indicated the modulus of the silica-filled SBR showing the lowest value. The contact area during rolling-sliding friction was always smaller than those during the static contact. The friction force at the unit contact area for the silica-filled SBR under braking and driving was higher than those of carbon black-filled SBRs.

  • PDF

Sequencing Batch Reactor (SBR)에서 포기시간 변경에 따른 영향 (2) - 미생물학적 변화 (Effects of the Variation of Aeration Time in Sequencing Batch Reactor (SBR) (2) - Microorganisms)

  • 정노성;박영식;김동석
    • 한국환경과학회지
    • /
    • 제20권1호
    • /
    • pp.49-59
    • /
    • 2011
  • The effect of the variation of aeration time on the microorganisms was investigated in sequencing batch reactor (SBRs). The cycling time in four SBRs was adjusted to 12 hours and then included different aerobic times as 1 hr, 2.5 hr, 4 hr and 5.5 hr, respectively. Four SBR systems have been operated and investigated for over 40 days. As the increase of aeration time, the consumption of glycogen within sludge at the 1st non-aeration time a little bit was increased and the production of glycogen at the aeration time was increased. Also, the produced PHB amounts and PHB production rate at the 1st non-aeration time were increased as the decrease of aeration time, which showed the activation of the phosphorus removal. The ratios of nitrifying microorganisms' number and GAOs to the total microorganisms' number in SBRs was decreased as the decrease of the aeration time, however, the PAOs ratio was almost constant irrespective of the variation of aeration time.

PAO와 dPAO 입상슬러지의 형태학적 특성에 대한 비교 고찰 (A Comparative Study on the Morphological Characteristics of PAO and dPAO Granule)

  • 윤금희;윤주환
    • 한국물환경학회지
    • /
    • 제33권3호
    • /
    • pp.302-310
    • /
    • 2017
  • The morphological characteristics of granules developing in anaerobic-anoxic (An-Ax) and anaerobic-aerobic (An-Ox) sequencing batch reactors (SBRs) were examined. The granules developed in the both SBRs after 200 days of laboratory operation. The average diameters of the granules were $2.2{\pm}1.7mm$ in the An-Ax SBR and $0.4{\pm}0.3mm$ in the An-Ox SBR. To determine the possible factors affecting morphology of granules a comparative analysis of various operating conditions from reference data indicated that the availability and type of electron acceptors is a key factor determining the granulation process and granular morphology.

연속회분식 반응기(Sequencing Batch Reactor)를 이용한 분뇨중 유기물과 질소 및 인의 동시제거 (Removal of Simultaneously Biological Organic, Nitrogen, and Phosphorus Removal in Sequencing Batch Reactors using Night-soil)

  • 한기백;박동근
    • 한국환경과학회지
    • /
    • 제6권6호
    • /
    • pp.697-709
    • /
    • 1997
  • Sequencing Batch Reactor(SBR) experiments for organics and nutrients removal have been conducted to find an optimum anaerobic/anoxic/aerobic cycling time and evaluate the applicability of oxidation-reduction potential(ORP) as a process control parameter. In this study, a 61 bench-scale plant was used and fed with night-soil wastewater in K city which contained TCODcr : 10, 680 mg/l, TBm : 6, 893 mg/l, $NH_4^+-N$ : 1, 609 mg/l, $PO_4^{3-}-P$ : 602 mg/l on average. The cycling time In SBRs was adjusted at 12 hours and 24 hours, and then certainly included anaerobic, aerobic and inoxic conditions. Also, for each cycling time, we performed 3 series of experiment simultaneously which was set up 10 days, 20 days and 30 days as SRT From the experimental results, the optimum cycling time for biological nutrient removal with nlght-soil wastewater was respctively 3hrs, 5hrs, 3hrs(anaerobic-aerobic-anoxic), Nitrogen removal efficiency was 77.9%, 77.9%, 81.7% for each SRT, respectively. When external carbon source was fed in the anoxic phase, ORP-bending point indicating nitrate break point appeared clearly and nitrogen removal efficiency increased as 96.5%, 97.1%, 98.9%. Phosphate removal efficiency was 59.8%, 64.571, 68.6% for each SRT. Also, we finded the applicability of ORP as a process control parameter in SBRs.

  • PDF

연속회분식 반응기(Sequencing Batch Reactor)에서 유기물, 질소 및 인의 거동에 관한 연구 (Study on Behavior of Organic, Nitrogen, and Phosphorus in the Sequencing Batch Reactor)

  • 한기백;박동근
    • 한국환경과학회지
    • /
    • 제6권5호
    • /
    • pp.521-529
    • /
    • 1997
  • In the study, we Investigated the behavior and removal efficiency of organics, nitrogen. phosphorus with operating conditions in SBRs. Substrate used was synthetic wastewater in which the ratio of $COD_{cr}$. : N : P was 100 : 12 : 2. The cycling the in SBRs was adjusted at 6 hours and 8 hours, and then certainly Included anaerobic and aerobic conditions. Also, for each cycling time. we performed 2 series of experiment simultaneously which was set up 10 days and 20 days as SRT. The removal efficiency of $COD_{cr}$. was over 97% in all operating conditions. In the 6 hours cycling time, the removal efficiency of $PO_4^{3-}-P$ reached almost 100% in steady state. And then we could observe a typical phonemena of phosphorus release and uptake, and the removal efficiency of N was 67%, Residual N source was almost TKN and most of the rest remained as $NO_2-N$. Also the difference in both SRTs was not observed practically. In the 8 hours cycling time, dissolution of sludge appeared. and, $PO_4^{3-}-P was not nearly removed but nitrogen was removed up to 75%, And the residual nitrogen was accumulated as $NO_2^--N$.

  • PDF

Nitrogen removal, nitrous oxide emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes

  • Sun, Yuepeng;Xin, Liwei;Wu, Guangxue;Guan, Yuntao
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.107-116
    • /
    • 2019
  • Nitrogen removal, nitrous oxide ($N_2O$) emission and microbial community in sequencing batch and continuous-flow intermittent aeration processes were investigated. Two sequencing batch reactors (SBRs) and two continuous-flow multiple anoxic and aerobic reactors (CMRs) were operated under high dissolved oxygen (DO) (SBR-H and CMR-H) and low DO (SBR-L and CMR-L) concentrations, respectively. Nitrogen removal was enhanced under CMR and low DO conditions (CMR-L). The highest total inorganic nitrogen removal efficiency of 91.5% was achieved. Higher nitrifying and denitrifying activities in SBRs were observed. CMRs possessed higher $N_2O$ emission factors during nitrification in the presence of organics, with the highest $N_2O$ emission factor of 60.7% in CMR-L. SBR and low DO conditions promoted $N_2O$ emission during denitrification. CMR systems had higher microbial diversity. Candidatus Accumulibacter, Nitrosomonadaceae and putative denitrifiers ($N_2O$ reducers and producers) were responsible for $N_2O$ emission.

Influence of SBR Type and Blend Ratio on Dynamic Mechanical Properties of SBR/SBR Biblend Composites

  • Sung-Seen Choi
    • Elastomers and Composites
    • /
    • 제59권1호
    • /
    • pp.17-21
    • /
    • 2024
  • Solution styrene-butadiene rubber (S-SBR) is used to improve the wet grip and rolling resistance properties of tire treads. As blending of SBRs can improve the physical properties of tire treads, we investigated the effects of SBR type and blending ratio on the physical properties. Twelve SBR/SBR biblend composites were prepared using four SBRs with different microstructures. The glass transition temperature (Tg), tanδ at 0℃ (wet grip predictor), and tanδ at 60℃ (rolling resistance predictor) were obtained from dynamic mechanical analysis, and were compared to the expected values obtained from the results of single SBR samples. Most of the SBR/SBR biblend composites exhibited crosslink densities lower than the expected values. The tanδ values at 0℃ and 60℃ of the SBR/SBR blend composites deviated from the expected values, with many of the deviations being disadvantageous. Of the twelve composites, six samples had higher 0℃ tanδ values than the corresponding expected values, and four exhibited superior wet grip properties to those of the SBR single samples. In addition, two of the twelve samples exhibited improved rolling resistance properties as compared with the single SBR samples. Finally, four samples exhibited lower Tg values than expected, and the Tg of one composite was lower than those of the single SBR samples.

고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술 (Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber)

  • 이범재;임기원;지상철;정권영;김태중
    • Elastomers and Composites
    • /
    • 제44권3호
    • /
    • pp.232-243
    • /
    • 2009
  • 근래 고성능 친환경 타이어의 개발요구에 의하여 경제성(낮은 회전 저항)과 안전성(wet traction) 및 내마모성면에서 균형있는 특성을 가지는 타이어 트레드 고무의 합성 제조 기술이 중요하게 대두된다. 이를 위하여 다양한 기능성 용액중합 SBR의 개발과 함께 고무/충전제 간의 상호작용 증진 기술이 학술적으로나 산업적으로 활용되고 있다. 본 고에서는 기존의 카본블랙 고무와 함께 최근 green tire로서 각광 받는 실리카 충전 고무에서 충전제와 상호반응이 가능한 화학적 변성 SBR과 커플링제를 이용한 고성능 타이어 트레드 고무의 합성 제조 기술에 대하여 최근 연구 방향과 함께 작용 메카니즘에 대하여 고찰하였다.