DOI QR코드

DOI QR Code

A Comparative Study on the Morphological Characteristics of PAO and dPAO Granule

PAO와 dPAO 입상슬러지의 형태학적 특성에 대한 비교 고찰

  • Yun, Geumhee (Program in Environmental Technology and Policy, Korea University) ;
  • Yun, Zuwhan (Department of Environmental Engineering, College of Science and Technology, Korea University)
  • 윤금희 (고려대학교 대학원 환경기술.정책협동) ;
  • 윤주환 (고려대학교 환경시스템공학과)
  • Received : 2017.02.09
  • Accepted : 2017.05.10
  • Published : 2017.05.30

Abstract

The morphological characteristics of granules developing in anaerobic-anoxic (An-Ax) and anaerobic-aerobic (An-Ox) sequencing batch reactors (SBRs) were examined. The granules developed in the both SBRs after 200 days of laboratory operation. The average diameters of the granules were $2.2{\pm}1.7mm$ in the An-Ax SBR and $0.4{\pm}0.3mm$ in the An-Ox SBR. To determine the possible factors affecting morphology of granules a comparative analysis of various operating conditions from reference data indicated that the availability and type of electron acceptors is a key factor determining the granulation process and granular morphology.

Keywords

References

  1. Adav S. S., Lee D. J., and Lai J. Y. (2007). Effect of Aeration Intensity on Formation of Phenol-fed Aerobic Granules and Extracellular Polymeric Substances, Applied Microbiology and Biotechnology, 77, 175-182. https://doi.org/10.1007/s00253-007-1125-3
  2. Angela M., Beatrice B., and Mathieu S. (2011). Biologically Induced Phosphorus Precipitation in Aerobic Granular Sludge Process, Water Research, 45, 3776-3786. https://doi.org/10.1016/j.watres.2011.04.031
  3. Angela M., Mathieu P., Beatrice B., and Mathieu S. (2012). Parameters Influencing Calcium Phosphate Precipitation in Granular Sludge Sequencing Batch Reactor, Chemical Engineering Science, 77, 165-175. https://doi.org/10.1016/j.ces.2012.01.009
  4. American Public Health Association, American Water Works Association and Water Environment Federation (APHA, AWWA and WEF). (2005). Standard Methods for the Examination of Water and Wastewater, 21st Eds., Washington DC, USA.
  5. Beun J. J., Hendriks A., and Van Loosdrecht M. C. M. (1999). Aerobic Granulation in a Sequencing Batch Reactor, Water Research, 33(10), 2283-2290. https://doi.org/10.1016/S0043-1354(98)00463-1
  6. Carvalho G., Meyer R. L., Yuan Z., and Keller J. (2006). Differential Distribution of Ammonia- and Nitrite-oxidising Bacteria in Flocs and Granules from a Nitrifying/denitrifying Sequencing Batch Reactor, Enzyme and Microbial Technology, 39, 1392-1398. https://doi.org/10.1016/j.enzmictec.2006.03.024
  7. Coma M., Puig S., Balaguer M. D., and Colprim J. (2010). The Role of Nitrate and Nitrite in a Granular Sludge Process Treating Low-strength Wastewater, Chemical Engineering Journal, 164, 208-213. https://doi.org/10.1016/j.cej.2010.08.063
  8. De Zeeuw, W. J. (1988). Granular sludge in UASB reactors, Proceeding of the GASMAT-Workshop. "Granular anaerobic sludge" microbiology and technology, in Lettinga, G., Zehnder A. J. B., Grotenkuis J. T. C., Hulshoff Pol L. W. (Eds.), Pudoc. Wageningen, the Netherlands, 132-145.
  9. Djamila A. H., Jacqueline T., Sven L., Thomas W., Thomas M., Daniela T., Andreas J., Wolfgang D., and Juliane H. (2008). Correlation of EPS Content in Activated Sludge at Different Sludge Retention Times with Membrane Fouling Phenomena, Water Research, 42, 1475-1488. https://doi.org/10.1016/j.watres.2007.10.026
  10. Dulekgurgen E., Artan N., Orhon D., and Wilderer P. A. (2008). How does Shear Affect Aggregation in Granular Sludge Sequencing Batch Reactors? Relations between Shear, Hydrophobicity, and Extracelluar Polymeric Substances, Water Science and Technology, 58(2), 267-276. https://doi.org/10.2166/wst.2008.382
  11. Frolund B.. Palmgren R., Keiding K., and Nielsen P. H. (1996). Extraction of Extracelluar Polymers from Activated Sludge using a Cation Exchange Resin, Water Research, 30, 1749-1758. https://doi.org/10.1016/0043-1354(95)00323-1
  12. Gao D., Liu L., Liang H., and Wu W. M. (2011). Comparison of Four Enhancement Strategies for Aerobic Granulation in Sequencing Batch Reactors, Journal of Hazardous Materials, 186, 320-327. https://doi.org/10.1016/j.jhazmat.2010.11.006
  13. Hood C. R. and Randall A. A. (2001). A Biochemical Hypothesis Explaining the Response of Enhanced Biological Phosphorus Removal Biomass to Organic Substrates, Water Research, 35(11), 2758-2766. https://doi.org/10.1016/S0043-1354(00)00573-X
  14. Hulshoff Pol, L. W., De Zeeuw, W. J., Velzeboer, C. T. M., and Lettinga, G. (1983). Granulation in UASB Reactors, Water Science and Technology, 15(8-9), 291-304.
  15. Jang H. L. (2002). Characterization of Aerobic Granular Sludge in SBR with High Loading Condition, Master's Thesis, Korea University, Seoul, Korea, 31-35. [Korean Literature]
  16. Jorand F., Boue-Bigne F., Block J. C., and Urvain V. (1998). Hydrophobic/hydrophilic Properties of Activated Sludge Exopolymeric Substances, Water Science and Technology, 37(4-5), 307-315. https://doi.org/10.1016/S0273-1223(98)00123-1
  17. Kim S. H., Choi H. C., and Kim I. S. (2004). Enhanced Aerobic Floc-like Granulation and Nitrogen Removal in a Sequencing Batch Reactor by Selection of Settling Velocity, Water Science and Technology, 50, 157-162.
  18. Letitinga, G., van Velsen, A. F. M., Hosma, S. W., de Zeeuw, W., and Klapwijk, A. (1980). Use of the Upflow Sludge Blanket (USB) Reactor Concept for Biological Wastewater Treatment, Especially for Anaerobic Treatment, Biotechnology and Bioengineering, 22(4), 699-734. https://doi.org/10.1002/bit.260220402
  19. Li, A., Li, X., and Yu, H. (2011). Effect of the Food to Microorganism (F/M) Ratio on the Formation and Size of Aerobic Sludge Granules, Process Biochemistry, 46(12), 2269-2276. https://doi.org/10.1016/j.procbio.2011.09.007
  20. Li, X. M., Liu, Q. Q., Yang, Q., Guo, L., Zeng, G. M., Hu, J. M., and Zheng, W. (2009). Enhanced Aerobic Sludge Granulation in Sequencing Batch Reactor by $Mg^{2+}$ Augmentation, Bioresource Technology, 100, 64-67. https://doi.org/10.1016/j.biortech.2008.06.015
  21. Li, Y., Liu, Y., and Xu, H. (2008). Is Sludge Retention Time a Decisive Factor for Aerobic Granulation in SBR?, Bioresource Technology, 99, 7672-7677. https://doi.org/10.1016/j.biortech.2008.01.073
  22. Liu, H. and Fang, H. H. P. (2002). Extraction of Extracellular Polymeric Substances (EPS) of Sludges, Journal of Biotechnology, 95, 249-256. https://doi.org/10.1016/S0168-1656(02)00025-1
  23. Liu, Y. Q., Liu, Y., and Tay, J. H. (2004). The Effects of Extracellular Polymeric Substances on the Formation and Stability of Biogranules, Applied Microbiology and Biotechnology, 65, 143-148.
  24. Liu, T. and Tay, J. H. (2004). State of the Art of Biogranulation Technology for Wastewater Treatment, Biotechnology Advances, 22(7), 533-563. https://doi.org/10.1016/j.biotechadv.2004.05.001
  25. McKinney, R. E. (1956). Biological Flocculation, Biological Treatment of Sewage and Industrial Wastes, Ed. McCabe, J. and Eckenfelder, W. W., Reinhold, New York, N. Y., 88-117.
  26. McSwain, B. S., Irvine, R. L. and Wilderer, P. A. (2004). The Influence of Settling Time on the Formation of Aerobic Granules, Water Science and Technology, 50(10), 195-202.
  27. McSwain, B. S., Irvine, R. L., Hausner, M., and Wilderer, P. A. (2005). Composition and Distribution of Extracellular Polymeric Substances in Aerobic Flocs and Granular Sludge, Applied and Environmental Microbiology, 71, 1051-1057. https://doi.org/10.1128/AEM.71.2.1051-1057.2005
  28. Mino, T., Satoh, H., and Matsuo T. (1994). Metabolisms of Different Bacterial Populations in Enhanced Biological Phosphate Removal Processes, Water Science and Technology, 29(7), 67-100.
  29. Mishima, K. and Nakamura, M. (1991). Self Immobilization of Aerobic Activated Sludge - a Pilot Study of the Aerobic Upflow Sludge Blanket Process in Municipal Sewage Treatment, Water Science and Technology, 23, 981-990. https://doi.org/10.2166/wst.1991.0550
  30. Morgenroth, E., Sherden, T., van Loosdrecht, M. C. M., Heignen, J. J., and Wilderer, P. A. (1997). Aerobic Granulation in a Sequencing Batch Reactor, Water Research, 31, 3191-3194. https://doi.org/10.1016/S0043-1354(97)00216-9
  31. Ni, B. J., Zeng, R. J., Fang, F., Xie, W. M., Sheng, G. P., and Yu, H. Q. (2010). Fractionating Soluble Microbial Products in the Activated Sludge Process, Water Research, 44, 2292-2302. https://doi.org/10.1016/j.watres.2009.12.025
  32. Pevere, A., Guibaud, G., van Hullebusch, E. D., Boughzala, W., and Lens, P. N. L. (2007). Effect of $Na^{+}\;and\;Ca^{2+}$ on the Aggregation Properties of Sieved Anaerobic Granular Sludge, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 306, 142-149.
  33. Qin, L., Liu, Y., and Tay, J. H. (2004). Effect of Settling Time on Aerobic Granulation in Sequencing Batch Reactor, Biochemical Engineering Journal, 21, 47-52. https://doi.org/10.1016/j.bej.2004.03.005
  34. Sheng, G. P., Yu, H. Q., and Yu, Z. (2005). Extraction of the Extracellular Polymeric Substances from a Photosynthetic Bacterium Rhodopseudomonas Acidophila, Applied Microbiology and Biotechnology, 67, 125-130. https://doi.org/10.1007/s00253-004-1704-5
  35. Sheng, G. P., Yu, H. Q., and Li, X. Y. (2010). Extracellular Polymeric Substances (EPS) of Microbial Aggregates in Biological Wastewater Treatment Systems: A review, Biotechnology Advances, 28, 882-894. https://doi.org/10.1016/j.biotechadv.2010.08.001
  36. Sun, X. F., Wang, S. G., Xiao, X. M., Chen, J. P., Li, X. M., Gao, B. Y., and Ma, Y. (2009). Spectroscopic Study of $Zn^{2+}\;and\;Co^{2+}$ Binding to Extracellular Polymeric Substances (EPS) from Aerobic Granules, Journal of colloid and Interface Sciences, 335, 11-17. https://doi.org/10.1016/j.jcis.2009.03.088
  37. Tay, J. H. and Yan, Y. G. (1996). Influence of Substrate Concentration on Microbial Selection and Granulation During Start-up of Upflow Anaerobic Sludge Blanket Reactors, Water research, 36, 702-712.
  38. Tay, J. H., Liu, Q. S., and Liu, Y. (2001). The Effects of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules, Applied and Environmental Microbiology, 57, 227-233.
  39. Wang, Z. W., Liu, Y., and Tay, J. H. (2006). The Role of SBR Mixed Liquor Volume Exchange Ratio in Aerobic Granulation, Chemosphere, 62, 767-771. https://doi.org/10.1016/j.chemosphere.2005.04.081
  40. Wang, Z., Liu, Y., and Tay, J. H. (2007). Biodegradability of Extracellular Polymeric Substances Produced by Aerobic Granules, Applied Microbiology and Biotechnology, 74, 462-466. https://doi.org/10.1007/s00253-006-0686-x
  41. Weng, C. N. and Molof, A. H. (1974). Nitrification in the Biological Fixed Film Rotating Disk System, Journal of the Water Pollution Control Federation, 46, 1674-1685.
  42. Wu, C. Y., Peng, Y. Z., Wang, S. Y., and Ma, Y. (2010). Enhanced Biological Phosphorus Removal by Granular Sludge: From Macro - to Micro-scale, Water Research, 44, 807-814. https://doi.org/10.1016/j.watres.2009.10.028
  43. Yun, Z., Choi, E., Park, Y., Lee, H., Jeong, H., Kim, K., Lee, H., Rho, K., and Gil, K. (2000). Extracellular Polymeric Substances in Relations to Nutrient Removal from SBBR, Proceeding of the 2000 IWA Specialty Conference on Extracellular Polymeric Substances: The construction material of Biofilm, Mulheim, Germany, Sept., 18-22.
  44. Zhang, B., Ji, M., Qiu, Z., Liu, H., Wang, J., and Li, J. (2011). Microbial Population Dynamics During Sludge Granulation in an Anaerobic-aerobic Biological Phosphorus Removal System, Bioresource Technology, 102, 2474-2480. https://doi.org/10.1016/j.biortech.2010.11.017
  45. Zheng, Y. M., Yu, H. Q., Liu, S. J., and Liu, X. Z. (2006). Formation and Instability of Aerobic Granules Under High Organic Loading Conditions, Chemosphere, 63(10), 1791-1800. https://doi.org/10.1016/j.chemosphere.2005.08.055
  46. Zheng, Y. M. and Yu, H. Q. (2007). Determination of the Pore Size Distribution and Porosity of Aerobic Granules Using Size Exclusion Chromatography, Water research, 41, 39-46. https://doi.org/10.1016/j.watres.2006.09.015
  47. Zhou, W., Imai, T., Ukita, M., Sekine, M. and Higuchi, T. (2006). Triggering Forces for Anaerobic Granulation in UASB Reactors, Process Biochemistry, 41, 36-43. https://doi.org/10.1016/j.procbio.2005.02.029
  48. Zhu, L., Lv, M., Dai, X., Yu, Y., Qi, H., and Xu, X. (2012). Role and Significance of Extracellular Polymeric Substances on the Property of Aerobic Granule, Bioresource Technology, 107, 46-54. https://doi.org/10.1016/j.biortech.2011.12.008