DOI QR코드

DOI QR Code

Morphological characteristics and nutrient removal efficiency of granular PAO and DPAO SBRs operating at different temperatures

  • Geumhee Yun (Department of Environmental Engineering, Korea University) ;
  • Jongbeom Kwon (National Institute of Environmental Research) ;
  • Sunhwa Park (National Institute of Environmental Research) ;
  • Young Kim (Department of Environmental Engineering, Korea University) ;
  • Kyungjin Han (Department of Environmental Engineering, Korea National University of Transportation)
  • Received : 2023.10.31
  • Accepted : 2024.01.23
  • Published : 2024.01.25

Abstract

Biological nutrient removal is gaining increasing attention in wastewater treatment plants; however, it is adversely affected by low temperatures. This study examined temperature effects on nutrient removal and morphological stability of the granular and denitrifying phosphorus accumulating organisms (PAO and DPAO, respectively) using sequencing batch reactors (SBRs) at 5, 10, and 20 ℃. Lab-scale SBRs were continuously operated using anaerobic-anoxic and anaerobic-oxic cycles to develop the PAO and DPAO granules for 230 d. Sludge granulation in the two SBRs was observed after approximately 200 d. The average removal efficiency of soluble chemical oxygen demand (SCOD) and PO43--P remained >90% throughout, even when the temperature dropped to 5 ℃. The average removal efficiency of NO3--N remained >80% consistently in DPAO SBR. However, nitrification drastically decreased at 10 ℃. Hence, the removal efficiency of NH4+-N was decreased from 99.1% to 54.5% in PAO SBR. Owing to the increased oxygen penetration depth at low temperatures, the influence on nitrification rates was limited. The granule in DPAO and PAO SBR was observed to be unstable and disintegrated at 10 ℃. In conclusion, morphological characteristics showed that changed conversion rates at low temperatures in aerobic granular sludge altered both nutrient removal efficiencies and granule formation.

Keywords

Acknowledgement

This research was supported by the Korea Ministry of Environment and the Technology Institute (KEITI) as "The Subsurface Environmental Management (SEM) project (2021002470002)", This research was supported by National Research Foundation of Korea (NRF) funded by the Ministry of Education (2022R1I1A3070866). This work was also supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIER-2023-01-01-134). This article has not been reviewed by these agencies, and no official endorsement should be inferred.

References

  1. Adav, S.S. and Lee, D. (2008), "Extraction of extracellular polymeric substances from aerobic granule with compact interior structure", J. Hazard. Mater., 154, 1120-1126. https://doi.org/10.1016/j.jhazmat.2007.11.058
  2. APHA (American Public Health Association), AWWA (American Water Works Association), WEF (Water Environment Federation) (2005), Standard Methods for the Examination of Water and Wastewater, (21st Edition), APHA-AWWA-WEF, Washington, D.C., U.S.A.
  3. Bao, R., Yu, S., Shi, W., Zhang, X. and Wang, Y. (2009), "Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor(SBAR) at low temperature", J. Hazard. Mater., 168(2-3), 1334-1340. https://doi.org/10.1016/j.jhazmat.2009.03.020.
  4. Barnard, J.L., Stevens, G.M. and Leslie, P.J. (1985), "Design strategies for nutrient removal plant", Water Sci. Technol., 17(11-12), 233-242. https://doi.org/10.2166/wst.1985.0235.
  5. Beun, J.J., Hendriks, A., van Loosdrecht, M.C.M., Morgenroth, E., Wilderer, P.A. and Heijnen, J.J. (1999), "Aerobic granulation in a sequencing batch reactor", Water Res., 33(10), 2283-2290. https://doi.org/10.1016/S0043-1354(98)00463-1.
  6. Brdjanovic, D., van Loosdrecht, M.C.M., Hooijmans, C.M., Alaerts, G.J. and Heijnen, J.J. (1997), "Temperature effects on physiology of biological phosphorus removal", J. Environ. Eng. ASCE, 123(2), 144-154. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(144).
  7. Brdjanovic, D., Logemann, S., van Loosdrecht, M.C.M., Hooijmans, C.M. and Heijnen, J.J. (1998), "Influence of temperature on biological phosphorus removal: process and molecular ecological studies", Water Res., 32(4), 1035-1048. https://doi.org/10.1016/S0043-1354(97)00322-9.
  8. Choi, E., Rhu, D., Yun, Z. and Lee, E. (1998), "Temperature effects on biological nutrient removal system with weak municipal wastewater", Water Sci. Technol., 37(9), 219-226. https://doi.org/10.1016/S0273-1223(98)00291-1.
  9. Coma, M., Verawaty, M., Pijuan, M., Yuan, Z. and Bond, P.L. (2012), "Enhancing aerobic granulation for biological nutrient removal from domestic wastewater", Bioresour. Technol., 103(1), 101-108. https://doi.org/10.1016/j.biortech.2011.10.014.
  10. de Kreuk, M.K. and van Loosdrecht, M.C.M. (2004), "Selection of slow growing organisms as a means for improving aerobic granular sludge stability", Water Sci. Technol., 49(11-12), 9-17. https://doi.org/10.2166/wst.2004.0792.
  11. de Kreuk, M.K., Heijnen, J.J. and van Loosdrecht, M.C.M. (2005), "Simultaneous COD, nitrogen and phosphate removal by aerobic granular sludge", Biotechnol. Bioeng., 90(6), 761-769. https://doi.org/10.1002/bit.20470.
  12. Ebrahimi, S., Gabus, S., Rohrbach-Brandt, E., Hosseini, M., Rossi, P., Maillard, J. and Holliger, C. (2010), "Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 oC, 30 oC and 35 oC", Appl. Microbiol. Biotechnol., 87, 1555-1568. https://doi.org/10.1007/s00253-010-2621-4.
  13. Eikelboom, D.H. andreadakis, A. and Andreasen, K. (1998), "Survey of filamentous populations in nutrient removal plants in four European countries", Water Sci. Technol., 37(4-5), 281-289. https://doi.org/10.1016/S0273-1223(98)00120-6.
  14. Erdal, U.G., Erdal, Z.K. and Randall, C.W. (2003), "The competition between PAOs and GAOs in EBPR systems at different temperature and the effects on system performance", Water Sci. Technol., 47(11), 1-8. https://doi.org/10.2166/wst.2003.0579.
  15. Henze, M., Gujer, W., Mino, T. and van Loosdrecht, M. (2006), Activated Sludge Models, ASM1, ASM2, ASM2d and ASM3, IWA Publishing, London, U.K.
  16. Iorhemen, O.T., Hamza, R.A. and Tay, J.H. (2017), "Utilization of aerobic granulation to mitigate membrane fouling in MBRs", Membr. Water Treat., 8(5), 395-409. https://doi.org/10.12989/mwt.2017.8.5.395.
  17. Jang, Y., Lee, W., Park, J. and Choi, Y. (2022). "Recovery of ammonia from wastewater by liquid-liquid membrane contactor: A review", Membr. Water Treat., 13(3), 147-166. https://doi.org/10.12989/mwt.2022.13.3.147.
  18. Jiang, X., Yuan, Y., Ma, F., Tian, J. and Wang, Y. (2016), "Enhanced biological phosphorus removal by granular sludge in anaerobic/aerobic/anoxic SBR during start-up period", Desalin. Water Treat, 57(13), 5760-5771. https://doi.org/10.1080/19443994.2015.1004114.
  19. Jung, M., Oh, T., Jung, K., Kim, J. and Kim, S. (2019), "Study on the optimization of partial nitritation using air-lift granulation reactor for two stage partial nitritation/Anammox process", Membr. Water Treat., 10(4), 265-275. https://doi.org/10.12989/mwt.2019.10.4.265
  20. Kagawa, Y., Tahata, J., Kishida, N., Matsumoto, S., Picioreanu, C., van Loosdrecht, M.C.M. and Tsuneda, S. (2015), "Modeling the nutrient removal process in aerobic granular sludge system by coupling the reactor- and granule-scale models", Biotechnol. Bioeng., 112(1), 53-64. https://doi.org/10.1002/bit.25331.
  21. Kruit, J., Hulsbeek, J. and Visser, A. (2002), "Bulking sludge solved?", Water Sci. Technol., 46(1-2), 457-464. https://doi.org/10.2166/wst.2002.0517.
  22. Lee, J., Kim, J., Lee, C., Yun, Z. and Choi, E. (2005), "Biological phosphorus and nitrogen removal with biological aerated filter using denitrifying phosphorus accumulating organism", Water Sci. Technol., 52(10-11), 569-578. https://doi.org/10.2166/wst.2005.0737.
  23. Lee, H. and Yun, Z. (2014), "Comparison of biochemical characteristics between PAO and DPAO sludges", J. Environ. Sci., 26(6), 1340-1347. https://doi.org/10.1016/S1001-0742(13)60609-9.
  24. Liu, Y. and Liu, Q. (2006), "Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors", Biotechnol. Adv., 24(1), 115-127. https://doi.org/10.1016/j.biotechadv.2005.08.001.
  25. Lopez-Vazquez, C.M., Oehmen, A., Hooijmans, C.M., Brdjanovic, D., Gijzen, H.J., Yuan, Z., van Loosdrecht, M. C. (2009), "Modeling the PAO-GAO competition: Effects of carbon source, pH and temperature", Water Res., 43(2), 450-462. https://doi.org/10.1016/j.watres.2008.10.032
  26. Nancharaiah, Y.V. and Kiran Kumar Reddy, G. (2018), "Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications", Bioresour. Technol., 247, 1128-1143.https://doi.org/10.1016/j.biortech.2017.09.131
  27. Nancharaiah, Y.V., Venkata Mohan, S., Lens, P.N. (2016), "Recent advances in nutrient removal and recovery in biological and bioelectrochemical systems", Bioresour. Technol., 215, 173-185. https://doi.org/10.1016/j.biortech.2016.03.129
  28. Mackey, B.J. (2019), "Performance and bacterial community profiling of PAO/DPAO in an EBPR bench-top-reactor with synthetic fermentation system", Ph.D. Dissertation, University of Utah, Salt Lake City, UT, U.S.A.
  29. Martins, A.M.P., Pagilla, K., Heijnen, J.J. and van Loosdrecht, M.C.M. (2004), "Filamentous bulking sludge-a critical review", Water Res., 38(4), 739-817. https://doi.org/10.1016/j.watres.2003.11.005.
  30. McClintock, S.A., Randall, C.W. and Pattarkine, V.M. (1993), "Effects of temperature and mean cell residence time on biological nutrient removal", Water Environ. Res., 65(2), 110-118. https://doi.org/10.2175/WER.65.2.3.
  31. McSwain, B.S., Irvine, R.L. and Wilderer, P.A. (2004a), "The effect of intermittent feeding on aerobic granule structure", Water Sci. Technol., 49(11-12), 19-25. https://doi.org/10.2166/wst.2004.0794.
  32. Korean Society on Water Environment (2010), "A study on the rational adjustment of WWTP effluent standard in Winter", Ministry of Environment (MoE) in Korea.
  33. Oehmen, A., Yuan, Z., Blackall, L.L., Keller, J. (2005), "Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms", Biotechnol. Bioeng., 91, 162-168. https://doi.org/10.1002/bit.20500
  34. Park, Y.M., Choi, S.Y., Park, K.Y. and Kweon, J. (2020). "Electrodialysis of metal plating wastewater with neutralization pretreatment: Separation efficiency and organic removal", Membr. Water Treat., 11(3), 179-187. https://doi.org/10.12989/mwt.2020.11.3.
  35. Purba, L.D.A., Ibiyeye, H.T., Yuzir, A., Mohamad, S.E., Iwamoto, K., Zamyadi, A. and Abdullah, N. (2020), "Various applications of aerobic granular sludge: A review", Environ. Technol. Innov., 20, 101045. https://doi.org/10.1016/j.eti.2020.101045.
  36. Rashidi, H., Sulaiman, N.M.N., Hashim, N.A., Bradford, L., Asgharnejad, H. and Larijani, M.M. (2020), "Development of the ultra/nano filtration system for textile industry wastewater treatment", Membr. Water Treat., 11(5), 333-344. https://doi.org/10.12989/mwt.2020.11.5.333.
  37. Winkler, M.K.H., Bassin, J.P., Kleerebezem, R., de Bruin, L.M.M., van den Brand, T.P.H. and van Loosdrecht, M.C.M. (2011), "Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures", Water Res., 45(11), 3291-3299. https://doi.org/10.1016/j.watres.2011.03.024.
  38. Winkler, M.K.H., Kleerebezem, R., de Bruin, L.M.M., Verheijen, P.J.T., Abbas, B., Habermacher, J. and van Loosdrecht, M.C.M. (2013), "Microbial diversity differences within aerobic granular sludge and activated sludge flocs", Appl. Microbiol. Biotechnol., 97, 7447-7458. https://doi.org/10.1007/s00253-012-4472-7.
  39. Yilmaz, G., Lemaire, R., Keller, J. and Yuan, Z. (2008), "Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge", Biotechnol. Bioeng., 100(3), 529-541. https://doi.org/10.1002/bit.21774.
  40. You, K., Kim, J., Pak, G., Yun, Z. and Kim, H. (2018), "Development of a WWTP influent characterization method for an activated sludge model using an optimization algorithm", Membr. Water Treat., 9(3), 155. https://doi.org/10.12989/mwt.2018.9.3.155.
  41. Yun, G., Lee, H., Hong, Y., Kim, S., Daigger, G.T. and Yun, Z. (2019), "The difference of morphological characteristics and population structure in PAO and DPAOgranular sludges", J. Environ. Sci., 76, 388-402. https://doi.org/10.1016/j.jes.2018.06.003.
  42. Zeng, R.J., Lemaire, R., Yuan, Z. and Keller J. (2003a), "Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor", Biotechnol. Bioeng., 84(2), 170-178. https://doi.org/10.1002/bit.10744.
  43. Zeng, R.J., Saunders, A.M., Yuan, Z., Blackall, L.L. and Keller, J. (2003b), "Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms", Biotechnol. Bioeng., 83(2), 140-148. https://doi.org/10.1002/bit.10652.