• Title/Summary/Keyword: SBR공정

Search Result 113, Processing Time 0.027 seconds

Nitrogen Removal Characteristics in Two-Sludge System of SBR Type Using Sewage Wastewater of Low C/N Ratio (낮은 C/N 비에서 운영되는 SBR 유형의 Two-Sludge 공정의 질소 제거 특성)

  • Ryu, Hong-Duck;Kim, Hak-In;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • In this study, nitrogen removal characteristics of SBR3 process, which is two-sludge system of sequencing batch reactor(SBR) type, were investigated, with comparison of those of SBR1 process, which is conventional SBR process, and SBR2 process, which was designed to enhance denitrification efficiency through step-feeding of wastewater, using domestic wastewater. SBR3 process of two-sludge type can perform external nitrification, on which nitrification occurs in separated reactor, and enhanced denitrification using biosorbed organics. In the results with domestic wastewater, T-N removal efficiency of SBR3 process was better than those of SBR1 and SBR2 processes. It was observed that bigger difference of T-N removal efficiency between SBR3 process and SBR1 & SBR2 processes was showed at low C/N ratio than that at high C/N ratio resulting from more efficient use of organics by biosorption mechanism in denitrification of SBR3 process than those of SBR1 and SBR2 processes. In addition, T-N removal efficiency of SBR3 process according to influent T-N loading rate was better than those of SBR1 and SBR2, even though influent T-N loading rate of SBR3 process was higher than that of SBR1 and SBR2 process resulting from operation of SBR3 process in short hydraulic retention time(HRT) by external nitrification.

A Study on Application of SBR Process for RO Retentate Treatment (RO 농축수 처리를 위한 SBR 공정 적용에 관한 연구)

  • Kim, Il-Whee;Joo, Hyun-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.79-85
    • /
    • 2012
  • In this study, Application of sequencing batch reactor (SBR) process for RO retentate treatment was performed. Efficiency of treatment by load and temperature variation was tested. The SBR process was operated two types as HRT per one cycle was 8 and 12 hours, respectively. Methanol was injected for an effective denitrificaion owing to low C/N ratio of the RO retentate. TN removal efficiency of the SBR process was relatively stable at the change of flow-rate and temperature. The optimum time cycle of SBR process was 2 cycle/day for TN removal, and in the case of 3 cycle/day, the effluent TN concentration was found under the effluent quality standard. In the result of assessment, the application of SBR process for RO retentate treatment was effective and could be utilized to design for the wastewater treatment plant. The specific nitrification rate (SNR) and specific denitrification rate (SDNR) were $0.043{\sim}0.066kg\;NH_3-N/kg\;MLVSS{\cdot}day$ and $0.096{\sim}0.287kg\;NH_3^--N/kg\;MLVSS{\cdot}day$, respectively. The derived kinetic could be applied for design to the aerobic and anoxic tank in the RO retentate treatment.

Modeling of SBR Process for Nitrogen ]Removal Via Quadratic Polynomial (이차다항식을 이용한 질소제거 SBR공정의 모델링)

  • 김동원;박장현;이호식;박영환;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.145-148
    • /
    • 2003
  • 본 논문에서는 이차다항식을 이용하여 생화학적인 공정의 모델링을 행한다. SBR 반응조에서 질소제거를 위한 수처리 공정이 제시되었으며, 이 공정의 ORP값을 모델링하고 동정하기 위해 서로 다른 형태의 선형모델이 소개되었으며 결과를 비교하고 분석한다 시뮬레이션 결과로부터 합리적이고 효율적으로 모델링 될 수 있음을 검증한다.

  • PDF

Process variations in SBR and BS-SBR treatment (SBR 및 BS-SBR 처리의 공정변화 연구)

  • 양형재;정윤철;신응배
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • The main purpose of this study was to determine effects of BS-SBR compared with SBR on the removal of soluble organics and sludge separation. In the BS-SBR process, soluble organics were removed by suspended activated sludge as well as biological fixed films and these two processes occurred simultaneously in one tank. The removal efficiency of soluble COD in the BS-SBR, approximately 97% in both 1 and 3-cycle/d was higher than for SBR. The BS-SBR process was very efficient for SS removal. The averaged SS concentration were 4.8 mg/l over the operation period, the daily SS values were consistently below 10 mg/l in both of 1-cycle and 3-cycle a day. The sludge settling characteristics in BS-SBR were totally different from SBR's. The sludge, dark brown, was well flocculated and its floc size was visible larger than the SBR's.

  • PDF

Modeling of Nonlinear SBR Process for Nitrogen Removal Using Fuzzy Systems (퍼지 시스템을 이용한 비선형 질소제거 SBR 공정의 모델링)

  • Kim, Dong-Won;Park, Jang-Hyun;Lee, Ho-Sik;Park, Young-Whan;Park, Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.190-194
    • /
    • 2004
  • This paper shows the application of fuzzy system for a modeling of nonlinear biochemical process. A wastewater treatment process for nitrogen removal in a sequencing batch reactor (SBR) is presented and fuzzy systems with different consequent polynomials in the fuzzy rules to model and identify the oxidation reduction potential (ORP) of the process are introduced. The paper compares, analyzes the results of fuzzy modeling, and shows the nonlinear process can be modeled reasonably well by the present scheme.

Effect of Feeding Pattern and Anaerobic Fill Time on the Denitrifcation and Sludge Settling Ability in the SBR Process (SBR 공정에서 유입수 주입방식과 비 포기 유입수 주입시간이 탈질효율과 슬러지 침강성에 미치는 영향)

  • Lee, Sang-Min;Nam, Se-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.719-725
    • /
    • 2005
  • Anaerobic fill time and feeding pattern in SBR operation were investigated to find way of minimizing poor nitrogen removal efficiency in BNR process without external carbon addition. The three types of the modified SBR operations that were CO-SBR, IA-SBR, and SF-SBR were tested by lab-scale and pilot-scale SBR processes($2\;m^3/day$). In addition, practical equation for biological nitrogen removal was suggested and the equation considered the effect of ratio of fill volume over whole SBR volume and the ratio of step-feed in SBR. The denitrification efficiency of the SF-SBR was best among the three SBRs and followed by IA-SBR, and CO-SBR. The efficiency was 95%, 61%, and 19%, respectively. Looking at the change of sludge floc density by the length of anaerobic fill time, the density of sludge floc at 1 hour and 2 hours of anaerobic fill time were greater than 3 hours of one. The floc size distributions were $100{\sim}300\;{\mu}m$ and $200{\sim}400\;{\mu}m$ with respect to anaerobic fill time 2 hours and 3 hours, respectively.

Advanced Treatment of Swine Wastewater using Hybrid-process (복합형 공정을 이용한 양돈폐수의 고도처리)

  • Kim, Choong-Gon;Kang, Seon-Hong;Shin, Hyun-Gon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.3
    • /
    • pp.126-133
    • /
    • 2004
  • This study is performed to examine the removal efficiency of organic materials,$NH_4-N$ and P in Swine-Wastewater Treatment using Hybrid-process. It named SBR process, Hybrid-process as RunI(SBR), and Run II(Struvite Tank-SBR), and compared the removal efficiency of each Run. The removal efficiency of the organic materials in each Run is like this; In Run I, TS, VS and COD was 43%, 39%, and 70%, respectively. And in Run II, TS VS, and COD was 52%, 52%, and 82%, respectively. It shows that the removal efficiency of Run II using Strutive Tank is higher. And as for the removal efficiency of $NH_4-N$ and T-P in each Run, Run II using Strutive Tank was 90% and 57%, higher than 56% and 49% of RunI. Especially for $NH_4-N$, Run II showed much higher efficiency, and this proved that Strutive Tank was very efficient process of all for the removal of N and P. As a result of this study, Hybrid-process that combines Strutive Tank and SBR is proved to be a very good process in Swine Wastewater Treatment.

  • PDF

Defect Analysis of the SBR Wastewater Treatment Plant for Unmanned Automation Based on Time-series Data Mining (시계열 데이터 마이닝을 이용한 하수처리 연속 회분식 반응기 장비 진단)

  • Bae, Hyeon;Choi, Dae-Won;Cheon, Seong-Pyo;Kim, Sung-Shin;Kim, Ye-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.431-436
    • /
    • 2005
  • This paper describes how to diagnose SBR plant equipment using time-series data mining. It shows the equipment diagnostics based upon vibration signals that are acquired front each device lot process control. Data transform techniques including two data preprocessing skills and data mining methods were employed in the data analysis. The proposed method is not only suitable for SBR equipment, but is also suitable for other Industrial devices. The experimental results performed on a lab-scale SBR plant show a good equip-ment-management performance.

Shipboard sewage treatment by Sequence Batch Reactor utilizing Beneficial Microorganisms (유용미생물을 적용한 선박오수용 SBR공정에 관한 연구)

  • Kim, In-Soo;Lee, Eon-Sung;Ha, Shin-Young;Oh, Yeom-Jae;Ekpeghere, Kelvin I.;Koh, Sung-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.10a
    • /
    • pp.36-37
    • /
    • 2010
  • Lab scale experiment was carried out to study applicability of BM (Beneficial Microorganisms) to the conventional SBR system for the shipboard sewage treatment. BM has been successfully applied to the wastewater treatment by the SBR process and hence this system maintained a stable effluent quality together with an increased treatment efficiency, meeting the requirements of IMO regulations. The SBR system facilitated by BM would be a suitable process for cruise ships in terms of the malodor control, treatment efficiency and operation conveniences.

  • PDF