• Title/Summary/Keyword: SBF:

Search Result 128, Processing Time 0.039 seconds

Multi-batch core design study for innovative small modular reactor based on centrally-shielded burnable absorber

  • Steven Wijaya;Xuan Ha Nguyen;Yunseok Jeong;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.907-915
    • /
    • 2024
  • Various core designs with multi-batch fuel management (FM) are proposed and optimized for an innovative small modular reactor (iSMR), focusing on enhancing the inherent safety and neutronic performance. To achieve soluble-boron-free (SBF) operation, cylindrical centrally-shielded burnable absorbers (CSBAs) are utilized, reducing the burnup reactivity swing in both two- and three-batch FMs. All 69 fuel assemblies (FAs) are loaded with 2-cylindrical CSBA. Furthermore, the neutron economy is improved by deploying a truly-optimized PWR (TOP) lattice with a smaller fuel radius, optimized for neutron moderation under the SBF condition. The fuel shuffling and CSBA loading patterns are proposed for both 2- and 3-batch FM with the aim to lower the core leakage and achieve favorable power profiles. Numerical results show that both FM configurations achieve a small reactivity swing of about 1000 pcm and the power distributions are within the design criteria. The average discharge burnup in the two-batch core is comparable to three-batch commercial PWR like APR-1400. The proposed checker-board CR pattern with extended fingers effectively assures cold shutdown in the two-batch FM scenario, while in the three-batch FM, three N-1 scenarios are failed. The whole evaluation process is conducted using Monte Carlo Serpent 2 code in conjunction with ENDF/B-VII.1 nuclear library.

Surface Apatite Growth of NaOH and SBF Treated CP-Ti, Ti-6Al-4V and ECAP-Ti (NaOH처리와 SBF침적에 따른 CP-Ti, Ti-6Al-4V 및 ECAP-Ti의 표면 아파타이트 성장)

  • Oh Seok-Jin;Ruy Jae-Gyeoung;Lee Seung-Woo;Kim Yun-Jong;Han Man-So;Kim Chang-Hyu
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.893-899
    • /
    • 2004
  • Even though Ti-6Al-4V has gained popularity as an implant material, the possible dissolution of Al and V ions in body fluids remains a matter of concern. Though commercially pure Ti (Cp-Ti) overcomes this problem, the mechanical strength of pure titanium remains very low. Thus, in this experiment Cp-Ti was processed by Equal channel angular processing (ECAP), in order to increase the mechanical strength. The biocompatibility of ECAP-Ti, Cp-Ti and Ti-6Al-4V was examined by the apatite formation on each sample surface, after treating the surface with 5M NaOH and soaking in Simulated body fluids (SBF). Initially, the samples were mechanically polished on silicone carbide paper (#2000). The polished samples were treated with 5M NaOH solution at $60^{\circ}C$ for 24 hours. The NaOH treated samples were washed gently with distill water and dried at $40^{\circ}C$ for 1 day. The dried samples were heat treated in air at $600^{\circ}C$ for 1 hour. The surface morphology of these samples were studied using SEM and XRD. The SEM studies showed network of pores in all samples. The XRD showed oxide layer formation on Cp-Ti and Ti-6Al-4V. samples. However the oxide layer in ECAP-Ti was not substantial. These samples were immersed in SBF, kept at $36.5^{\circ}C$ for seven days period. At the end of 7 days, the apatite formation was confirmed only on Cp-Ti and was not observed in Ti-6Al-4V and ECAP-Ti. These observations of apatite formation relate to the fact that Cp-Ti showed greater oxide layer than other samples. The apatite examined was confirmed as tricalcium phosphate (TCP) using EDS and XRD.

Dissolution behavior of octacalcium phosphate added hydroxyapatite (수산화아파타이트가 첨가된 옥타칼슘포스페이트의 분해거동)

  • Ha, Yebeen;Yoo, Kyung-Hyeon;Kim, Somin;Yoon, Seog Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.5
    • /
    • pp.203-211
    • /
    • 2021
  • Octacalcium phosphate(OCP, Ca8H2(PO4)6·5H2O) is one of biodegradable calcium phosphate materials with osteoconductivity and biocompatibility. It has the advantage of rapid bone formation and resorption due to the property of stimulating stromal cells to differentiate into osteoblasts. However, if OCP is inserted in body, it is immediately decomposed without maintaining of its shape as scaffolds due to their weak cohesive force between powder. On the other hand, hydroxyapatite (HA, Ca10(PO4)6(OH)2), which has a crystal structure similar to that of OCP, remains in the body without decomposition until the bone defect is restored. In this study, the degradation behavior of OCP/HA disc with different amount of HA in SBF (simulated body fluid) solution was characterized in terms of the weight loss, pH variation and microstructure change with immersion duration in SBF solution. As a result, the OCP/HA disc was not quickly decomposed and maintained its own shape for 2 weeks regardless of HA content. In particular, the surface of 40HA specimen was uniformly dissolved and then CDHA (calcium deficient hydroxyapatite) phase were formed onto the surface of disc after 7 days in SBF solution. It would be suggested that the 40HA specimen would be suitable candidate material as the scaffolds for the restoration of bone defect.

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity (고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가)

  • Go, Jaeeun;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.

Evaluation of dietary habits according to breakfast consumption in Korean adolescents: based on the 6th Korea National Health and Nutrition Examination Survey, 2013~2015 (우리나라 청소년들의 아침식사 여부에 따른 식생활 상태 평가 : 2013~2015 국민 건강영양조사 자료를 이용하여)

  • Kim, Hyun-Suk;Lee, Ui-Suk;Kim, Seon-Hyeong;Cha, Youn-Soo
    • Journal of Nutrition and Health
    • /
    • v.52 no.2
    • /
    • pp.217-226
    • /
    • 2019
  • Purpose: This study examined the nutrient intake and dietary habits based on breakfast consumption in Korean adolescents. Methods: The data of the 2013 ~ 2015 Korea National Health and Nutrition Examination Survey (KNHANES) were used in this study. The analysis included 1,281 adolescents aged 12 to 18 years. The subjects were divided into two groups (EBF: eating breakfast, n = 911; SBF: skipping breakfast, n = 370). Results: The EBF group was significantly younger than the SBF group. In addition, the EBF group had a significantly lower frequency of skipping dinner than the SBF group. The EBF group consumed significantly higher levels of most nutrients except for vitamin A than the SBF group. The percent of nutrient intake under the EAR (estimated average requirements) in the EBF group were also significantly lower than that in the SBF group. Moreover, the NAR (nutrient adequacy ratio) and MAR (mean adequacy ratio) of the EBF group were significantly higher than those of the SBP group. The intake of cereal, sugars and sweeteners, vegetables, and eggs in the EBF group was significantly higher than that in the SBF group. Conclusion: The habit of skipping breakfast in adolescents leads to a decrease in the total nutrient intake and imbalanced dietary habits. Breakfast consumption in adolescence is very important. Therefore, more studies will be needed to develop nutrition education systematically in Korean adolescents.

Setting and Hydroxyapatite Formation of Bioactive Glass Bone Cement (생체활성 유리 골 시멘트의 응결 및 수산화 아파타이트 형성)

  • Lim, Hyoung-Bong;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.770-776
    • /
    • 2005
  • Hardening and hydroxyapatite(HAp) formation behavior of the bioactive cements in the system of $CaO-SiO_{2}-P_{2}O_{5}$ glasses and the corresponding glass-ceramics were studied. DCPD (Dicalcium Phosphate Dihydrate: $CaHPO_4{\cdot}2H_2O$) and DCPA (Dicalcium Phosphate Anhydrous: $CaHPO_4$) were developed when the prepared glass and glass-ceramic powders were mixed with three different solutions. The DCPD and DCPA transformed to HAp when the cement was soaked in Simulated Body Fluid (SBF), and this HAp formation strongly depended on the releasing capacity of $Ca^{2+}$ ions from the cements. The glass-ceramic containing apatite showed fast setting, but no HAp formation was observed because no $Ca^{2+}$ ions were released from this glass-ceramics. The compressive strength of the cements increased with reaction time in SBF until all DCPD and DCPA transformed to HAp.

Investigation of the Biodegradable Mechanism of Pure Magnesium Using Electrochemical Impedance Spectroscopy Technique

  • Kim, Woo-Cheol;Kim, Seon-Hong;Kim, Jung-Gu;Kim, Young-Yul
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.43-53
    • /
    • 2016
  • In this study, electrochemical impedance spectroscopy (EIS) was used to examine the changes in the electrochemical properties of biodegradable pure magnesium implanted into Sprague-Dawley rats for three days. The in vivo test results were compared with those of the in vitro tests carried out in Hank's, dilute saline and simulated body fluid (SBF) solutions. The in vitro corrosion rates were 20~1700 fold higher, as compared to the in vivo corrosion rates. This discrepancy is caused by biomolecule adsorption on the surface, which prevents the transport of water into the magnesium surface on in vivo testing. Among the in vitro experimental conditions, the corrosion rate in SBF solution had the least difference from the in vivo implanted specimen.

최적 화물 선적을 위한 화주 에이전트 기반의 협상방법론

  • Kim, Hyeon-Su;Jo, Jae-Hyeong;Choe, Hyeong-Rim;Park, Nam-Gyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.94-102
    • /
    • 2005
  • 화주의 선박 선정과정은 선박과 화물의 일정에 따른 1차 선정과 화물을 재선적하여 하나의 단위로 선복을 집중시키는 2차 선정으로 구분된다. 지금까지 3자물류업체는 이러한 선적업무가 수작업으로 진행됨으로써 비효율성을 초래하였다. 그러므로 본 연구에서는 에이전트 협상을 통해 전체 물류비를 감소시킬 수 있는 방안을 제안하고자 한다. 화물의 집중과 배분을 통해 얻을 수 있는 물류비 절감을 최대화 시키기 위해 재고비와 운임비간의 상관관계에서 최적점을 찾아야 하며 이를 화주간 협상으로 해결할 수 있다. 실험에서는 현업에서 이루어지는 화물 선적방법인 EPDS(Earliest Possible Departure-Date Scheduling)와 LPDS(Latest Possible Departure-Date Scheduling)에 본 협상방법론을 접목하여 SBF(Scheduling Bundle Factor, 선적동시처리량)에 따른 재고비, 운임비 그리고 물류비 등을 도출하고 실험결과를 분석 하였다, 분석결과, 협상방법론이 EPDS와 사용될 경우 전체 물류비를 최소화 시킬 수 있었다.

  • PDF

Fabrication of Porous Structure of BCP Sintered Bodies Using Microwave Assisted Synthesized HAp Nano Powder

  • Youn, Min-Ho;Paul, Rajat Kanti;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.475-476
    • /
    • 2006
  • Using microwave synthesized HAp nano powder and polymethyl methacrylate (PMMA) as a pore-forming agent, the porous biphasic calcium phosphate (BCP) ceramics were fabricated depending on the sintering temperature. The synthesized HAp powders was about 70-90 nm in diameter. In the porous sintered bodies, the pores having $150-180\;{\mu}m$ were homogeneously dispersed in the BCP matrix. Some amounts of pores interconnected due the necking of PMMA powders which will increase the osteoconductivity and ingrowth of bone-tissues while using as a bone substrate. As the sintering temperature increased, the relative density increased and showed the maximum value of 79.6%. From the SBF experiment, the maximum resorption of $Ca^{2+}$ ion was observed in the sample sintered at $1000^{\circ}C$.

  • PDF