Browse > Article
http://dx.doi.org/10.14773/cst.2016.15.2.43

Investigation of the Biodegradable Mechanism of Pure Magnesium Using Electrochemical Impedance Spectroscopy Technique  

Kim, Woo-Cheol (Department of Advanced Materials Engineering, Sungkyunkwan University)
Kim, Seon-Hong (Department of Advanced Materials Engineering, Sungkyunkwan University)
Kim, Jung-Gu (Department of Advanced Materials Engineering, Sungkyunkwan University)
Kim, Young-Yul (Department of Orthopaedics, Catholic University Sung-Mo Hospital)
Publication Information
Corrosion Science and Technology / v.15, no.2, 2016 , pp. 43-53 More about this Journal
Abstract
In this study, electrochemical impedance spectroscopy (EIS) was used to examine the changes in the electrochemical properties of biodegradable pure magnesium implanted into Sprague-Dawley rats for three days. The in vivo test results were compared with those of the in vitro tests carried out in Hank's, dilute saline and simulated body fluid (SBF) solutions. The in vitro corrosion rates were 20~1700 fold higher, as compared to the in vivo corrosion rates. This discrepancy is caused by biomolecule adsorption on the surface, which prevents the transport of water into the magnesium surface on in vivo testing. Among the in vitro experimental conditions, the corrosion rate in SBF solution had the least difference from the in vivo implanted specimen.
Keywords
biomaterials; magnesium; implantation; corrosion; scanning electron microscopy (SEM);
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias, Biomaterials, 27, 1728 (2006).   DOI
2 J. Y. Lee, G. S. Han, Y. C. Kim, J. Y. Byun, J. I. Jang, H. K. Seok S. J. Yang, Met. Mater. Int., 1, 955 (2009).
3 F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, F. Feyerabend, Curr. Opin. Solid State Mater. Sci., 12, 63 (2008).   DOI
4 E. Zhang, L. Xu, G. Yu, F. Pan, K. Yang, J. Biomed. Mater. Res. A, 90A, 882 (2009).   DOI
5 D. R. Sumner, J. O. Galante, Clin. Orhop. Relat. Res., 274, 202 (1992).
6 J. Nagels, M. Stokdijk, P. M. Rozing, J. Shoulder Elb. Surg., 12, 35 (2003).   DOI
7 D. A. Puleo, W. W. Huh, J. Appl. Biomater., 6, 109 (1995).   DOI
8 G. Mani, M. D. Feldman, D. Patel, C. M. Agrawal, Biomaterials, 28, 1689 (2007).   DOI
9 Z. Li, X. Gu, S. Lou, Y. Zheng, Biomaterials, 29, 1329 (2008).   DOI
10 L. Xu, F. Pan, G. Yu, L. Yang, E. Zhang, K. Y. Yang, Biomaterials, 30 1512 (2009).   DOI
11 W. D. Mueller, M. L. Nascimento, M. F. Lorenzo, Acta Biomater., 6, 1749 (2010).   DOI
12 Y. Wang, M. Wei, J. Gao, J. Hu, Y. Zhang, Mater. Lett., 62, 2081 (2008).   DOI
13 V. J. Colangelo, N. D. Greene, J. Biomed. Mater. Res., 1, 405 (1967).   DOI
14 M. G. Fontana, N. D. Greene, Corrosion Engineering, p. 390, McGraw-Hill, New York (1978).
15 F. Witte, J. Fischer, J. Nellesen, H. A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, Biomaterials, 27, 1013 (2006).   DOI
16 E. D. McBride, J. Am. Med. Assoc., 27, 2464 (1938).
17 J. Verbrugge, La. Press. Med., 23, 460 (1934).
18 J. T, Scales, G. D. Winter, J. Bone Joint Surg., 41-B, 810 (1959).   DOI
19 J. Cohen, J. Wulff, J. Bone Joint Surg., 54-A, 617 (1972).
20 N. Yuichiro, Y. Takao, K. Yosihiko, O. Masanori, Biomaterials, 10, 420 (1989).   DOI
21 S. R. Sousa, M. A. Barbosa, Clin. Mater., 14, 287 (1993).   DOI
22 W. C. Kim, J. G. Kim, J. Y. Lee, H. K. Seok, Mater. Lett., 62, 4146 (2008).   DOI
23 K. Tadashi, T. Hiroaki, Biomaterials, 27, 2907 (2006).   DOI
24 R. Lindstrom, L. Johansson, G. E. Thompson, P. Skeldon, J. Svensson, Corros. Sci., 46, 1141 (2004).   DOI
25 S. Zhang, X. Zhang, C. Zhao, J. Li, Y. Song, C. Xie, H. Tao, Y. Zhang, T. He, Y. Jiang, Y. Bian, Acta Biomater., 6, 626 (2010).   DOI
26 P. Schmutz, V. Guillaumin, R. S. Lillard, J. A. Lillard, G. S. Frankel, J. Electrochem. Soc., 150, B99 (2003).   DOI
27 G. Williams, H. N. McMurray, J. Electrochem. Soc., 155, C340 (2008).   DOI
28 G. L. Song, A. Atrens, Adv. Eng. Mater., 1, 11 (1999).   DOI
29 N. T. Kirkland, J. Waterman, N. Birbilis, G. Dias, T. B. F. Woodfield, R. M. Hartshorn, M. P. Staiger, J. Mater. Sci. Mater. M., 23, 283 (2012).   DOI
30 M. Browne, J. Gregson, Biomaterials, 15, 894 (1994).   DOI
31 J. A. Helsen, H. J. Breme, Metals as Biomaterials, p. 102, John Willey & Sons New York (1998).
32 S. Hiromoto, K. Noda, T. Hanawa, Corros. Sci., 44, 955 (2002).   DOI
33 C. Liu, Y. Xin, X. Tian, P. K. Chu, J. Mater. Res., 22, 1806 (2007).   DOI
34 C. Liu, Y. J. Wang, R. C. Zeng, X. M. Zhang, W. J. Huang, P. K. Chu, Corros. Sci., 52, 3341 (2010).   DOI
35 I. B. Beech, J. Sunner, Curr. Opin. Biotech., 15, 181 (2004).   DOI
36 D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., p. 40, Prentice-Hall, NJ (1996).
37 J. A. Helsen, H. J. Breme, Metals as Biomaterials, p. 186, John Willey & Sons New York (1998).