• Title/Summary/Keyword: SB Ge-MOSFETs

Search Result 3, Processing Time 0.015 seconds

A Study on Contact Resistance Reduction in Ni Germanide/Ge using Sb Interlayer

  • Kim, Jeyoung;Li, Meng;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.210-214
    • /
    • 2016
  • In this paper, the decrease in the contact resistance of Ni germanide/Ge contact was studied as a function of the thickness of the antimony (Sb) interlayer for high performance Ge MOSFETs. Sb layers with various thickness of 2, 5, 8 and 12 nm were deposited by RF-Magnetron sputter on n-type Ge on Si wafers, followed by in situ deposition of 15nm-thick Ni film. The contact resistance of samples with the Sb interlayer was lower than that of the reference sample without the Sb interlayer. We found that the Sb interlayer can lower the contact resistance of Ni germanide/Ge contact but the reduction of contact resistance becomes saturated as the Sb interlayer thickness increases. The proposed method is useful for high performance n-channel Ge MOSFETs.

Analysis of Thermal Stability and Schottky Barrier Height of Pd Germanide on N-type Ge-on-Si Substrate (N형 Ge-on-Si 기판에 형성된 Pd Germanide의 열안정성 및 Schottky 장벽 분석)

  • Oh, Se-Kyung;Shin, Hong-Sik;Kang, Min-Ho;Bok, Jeong-Deuk;Jung, Yi-Jung;Kwon, Hyuk-Min;Lee, Ga-Won;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.271-275
    • /
    • 2011
  • In this paper, thermal stability of palladium germanide (Pd germanide) is analyzed for high performance Schottky barrier germanium metal oxide semiconductor field effect transistors (SB Ge-MOSFETs). Pd germanide Schottky barrier diodes were fabricated on n-type Ge-on-Si substrates and the formed Pd germanide shows thermal immunity up to $450^{\circ}C$. The barrier height of Pd germanide is also characterized using two methods. It is shown that Pd germanide contact has electron Schottky barrier height of 0.569~0.631 eV and work function of 4.699~4.761 eV, respectively. Pd germanide is promising for the nanoscale Schottky barrier Ge channel MOSFETs.

The Channel Material Study of Double Gate Ultra-thin Body MOSFET for On-current Improvement

  • Park, Jae-Hyeok;Jeong, Hyo-Eun
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.457-458
    • /
    • 2014
  • In this paper, quantum mechanical simulations of the double-gate ultra-thin body (DG-UTB) MOSFETs are performed according to the International Technology Roadmap of Semiconductors (ITRS) specifications planned for 2020, to devise the way for on-current ($I_{on}$) improvement. We have employed non-equilibrium Green's function (NEGF) approach and solved the self-consistent equations based on the parabolic effective mass theory [1]. Our study shows that the [100]/<001> Ge and GaSb channel devices have higher $I_{on}$ than Si channel devices under the body thickness ($T_{bd}$) <5nm condition.

  • PDF