• Title/Summary/Keyword: SARIMA모형

Search Result 31, Processing Time 0.029 seconds

Comparison Studies of Hybrid and Non-hybrid Forecasting Models for Seasonal and Trend Time Series Data (트렌드와 계절성을 가진 시계열에 대한 순수 모형과 하이브리드 모형의 비교 연구)

  • Jeong, Chulwoo;Kim, Myung Suk
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.1-17
    • /
    • 2013
  • In this article, several types of hybrid forecasting models are suggested. In particular, hybrid models using the generalized additive model (GAM) are newly suggested as an alternative to those using neural networks (NN). The prediction performances of various hybrid and non-hybrid models are evaluated using simulated time series data. Five different types of seasonal time series data related to an additive or multiplicative trend are generated over different levels of noise, and applied to the forecasting evaluation. For the simulated data with only seasonality, the autoregressive (AR) model and the hybrid AR-AR model performed equivalently very well. On the other hand, if the time series data employed a trend, the SARIMA model and some hybrid SARIMA models equivalently outperformed the others. In the comparison of GAMs and NNs, regarding the seasonal additive trend data, the SARIMA-GAM evenly performed well across the full range of noise variation, whereas the SARIMA-NN showed good performance only when the noise level was trivial.

Forecasting the Korea's Port Container Volumes With SARIMA Model (SARIMA 모형을 이용한 우리나라 항만 컨테이너 물동량 예측)

  • Min, Kyung-Chang;Ha, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.6
    • /
    • pp.600-614
    • /
    • 2014
  • This paper develops a model to forecast container volumes of all Korean seaports using a Seasonal ARIMA (Autoregressive Integrated Moving Average) technique with the quarterly data from the year of 1994 to 2010. In order to verify forecasting accuracy of the SARIMA model, this paper compares the predicted volumes resulted from the SARIMA model with the actual volumes. Also, the forecasted volumes of the SARIMA model is compared to those of an ARIMA model to demonstrate the superiority as a forecasting model. The results showed the SARIMA Model has a high level of forecasting accuracy and is superior to the ARIMA model in terms of estimation accuracy. Most of the previous research regarding the container-volume forecasting of seaports have been focussed on long-term forecasting with mainly monthly and yearly volume data. Therefore, this paper suggests a new methodology that forecasts shot-term demand with quarterly container volumes and demonstrates the superiority of the SARIMA model as a forecasting methodology.

Forecasts of electricity consumption in an industry building (광, 공업용 건물의 전기 사용량에 대한 시계열 분석)

  • Kim, Minah;Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.189-204
    • /
    • 2018
  • This study is on forecasting the electricity consumption of an industrial manufacturing building called GGM from January 2014 to April 2017. We fitted models using SARIMA, SARIMA + GARCH, Holt-Winters method and ARIMA with Fourier transformation. We also forecasted electricity consumption for one month ahead and compared the predicted root mean square error as well as the predicted error rate of each model. The electricity consumption of GGM fluctuates weekly and annually; therefore, SARIMA + GARCH model considering both volatility and seasonality, shows the best fit and prediction.

Short-term Railway Passenger Demand Forecasting by SARIMA Model (SARIMA모형을 이용한 철도여객 단기수송수요 예측)

  • Noh, Yunseung;Do, Myungsik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.4
    • /
    • pp.18-26
    • /
    • 2015
  • This study is a fundamental research to suggest a forecasting model for short-term railway passenger demand focusing on major lines (Gyeungbu, Honam, Jeonla, Janghang, Jungang) of Saemaeul rail and Mugunghwa rail. Also the author tried to verify the potential application of the proposed models. For this study, SARIMA model considering characteristics of seasonal trip is basically used, and daily mean forecasting models are independently constructed depending on weekday/weekend in order to consider characteristics of weekday/weekend trip and a legal holiday trip. Furthermore, intervention events having an impact on using the train such as introduction of new lines or EXPO are reflected in the model to increase reliability of the model. Finally, proposed models are confirmed to have high accuracy and reliability by verifying predictability of models. The proposed models of this research will be expected to utilize for establishing a plan for short-term operation of lines.

Forecasting the Air Cargo Demand With Seasonal ARIMA Model: Focusing on ICN to EU Route (계절성 ARIMA 모형을 이용한 항공화물 수요예측: 인천국제공항발 유럽항공노선을 중심으로)

  • Min, Kyung-Chang;Jun, Young-In;Ha, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.3
    • /
    • pp.3-18
    • /
    • 2013
  • This study develops a forecasting method to estimate air cargo demand from ICN(Incheon International Airport) to all airports in EU with Seasonal Autoregressive Integrated Moving Average (SARIMA) Model using volumes from the first quarter of 2000 to the fourth quarter of 2009. This paper shows the superiority of SARIMA Model by comparing the forecasting accuracy of SARIMA with that of other ARIMA (Autoregressive Integrated Moving Average) models. Given that very few papers and researches focuses on air route, this paper will be helpful to researchers concerned with air cargo.

Application of SARIMA Model in Air Cargo Demand Forecasting: Focussing on Incheon-North America Routes (항공화물수요예측에서 계절 ARIMA모형 적용에 관한 연구: 인천국제공항발 미주항공노선을 중심으로)

  • SUH, Bo Hyoun;YANG, Tae Woong;HA, Hun-Koo
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • For forecasting air cargo demand from Incheon National Airport to all of airports in the United States (US), this study employed the Seasonal Autoregressive Integrated Moving Average (SARIMA) method and the time-series data collected from the first quarter of 2003 to the second quarter of 2016. By comparing the SARIMA method against the ARIMA method, it was found that the SARIMA method performs well, relatively with time series data highlighting seasonal periodic characteristics. While existing previous research was generally focused on the air passenger and the air cargo as a whole rather than specific air routes, this study emphasized on a specific air cargo demand to the US route. The meaningful findings would support the future research.

A Study on the Traffic Volume Correction and Prediction Using SARIMA Algorithm (SARIMA 알고리즘을 이용한 교통량 보정 및 예측)

  • Han, Dae-cheol;Lee, Dong Woo;Jung, Do-young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.1-13
    • /
    • 2021
  • In this study, a time series analysis technique was applied to calibrate and predict traffic data for various purposes, such as planning, design, maintenance, and research. Existing algorithms have limitations in application to data such as traffic data because they show strong periodicity and seasonality or irregular data. To overcome and supplement these limitations, we applied the SARIMA model, an analytical technique that combines the autocorrelation model, the Seasonal Auto Regressive(SAR), and the seasonal Moving Average(SMA). According to the analysis, traffic volume prediction using the SARIMA(4,1,3)(4,0,3) 12 model, which is the optimal parameter combination, showed excellent performance of 85% on average. In addition to traffic data, this study is considered to be of great value in that it can contribute significantly to traffic correction and forecast improvement in the event of missing traffic data, and is also applicable to a variety of time series data recently collected.

Implementation of Ozone Concentration Prediction Model Using SARIMA Model in Atmospheric (SARIMA모형을 이용한 대기 중 오존농도 예측 모델 구축)

  • Kang, Jung-Ku;Park, Seok-Cheon;Kim, Jong-Hyun
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.641-644
    • /
    • 2015
  • 우리나라는 지난 40년간 급속한 경제 성장의 과정에서 에너지 소비가 급증하고 있으며, 이로 인해 온실가스 배출량은 1990년~2005년 사이 두 배 이상 증가하였고, 이는 OECD 국가 중 가장 높은 증가율이다. 2차 오염물질인 오존은 1990년부터 2012년까지 연평균 3% 상승하고 있으며, 반복 노출 시 폐에 피해를 줄 수 있는 오염 물질로 예방 대책이 필요하다. 이를 위해 본 논문에서는 계절성 특성을 지닌 오존농도 시계열 데이터를 바탕으로 SARIMA 모형을 활용하여 예측 모형을 구축 하였다.

Prediction of Covid-19 confirmed number of cases using SARIMA model (SARIMA모형을 이용한 코로나19 확진자수 예측)

  • Kim, Jae-Ho;Kim, Jang-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.58-63
    • /
    • 2022
  • The daily number of confirmed cases of Coronavirus disease 2019(COVID-19) ranges between 1,000 and 2,000. Despite higher vaccination rates, the number of confirmed cases continues to increase. The Mu variant of COVID-19 reported in some countries by WHO has been identified in Korea. In this study, we predicted the number of confirmed COVID-19 cases in Korea using the SARIMA for the Covid-19 prevention strategy. Trends and seasonality were observed in the data, and the ADF Test and KPSS Test was used accordingly. Order determination of the SARIMA(p,d,q)(P, D, Q, S) model helped in extracting the values of p, d, q, P, D, and Q parameters. After deducing the p and q parameters using ACF and PACF, the data were transformed and schematized into stationary forms through difference, log transformation, and seasonality removal. If seasonality appears, first determine S, then SARIMA P, D, Q, and finally determine ARIMA p, d, q using ACF and PACF for the order excluding seasonality.

Prediction of KRW/USD exchange rate during the Covid-19 pandemic using SARIMA and ARDL models (SARIMA와 ARDL모형을 활용한 COVID-19 구간별 원/달러 환율 예측)

  • Oh, In-Jeong;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.191-209
    • /
    • 2022
  • This paper is a review of studies that focus on the prediction of a won/dollar exchange rate before and after the covid 19 pandemic. The Korea economy has an unprecedent situation starting from 2021 up till 2022 where the won/dollar exchange rate has exceeded 1,400 KRW, a first time since the global financial crisis in 2008. The US Federal Reserve has raised the interest rate up to 2.5% (2022.7) called a 'Big Step' and the Korea central bank has also raised the interested rate up to 2.5% (2022.8) accordingly. In the unpredictable economic situation, the prediction of the won/dollar exchange rate has become more important than ever. The authors separated the period from 2015.Jan to 2022.Aug into three periods and built a best fitted ARIMA/ARDL prediction model using the period 1. Finally using the best the fitted prediction model, we predicted the won/dollar exchange rate for each period. The conclusions of the study were that during Period 3, when the usual relationship between exchange rates and economic factors appears, the ARDL model reflecting the variable relationship is a better predictive model, and in Period 2 of the transitional period, which deviates from the typical pattern of exchange rate and economic factors, the SARIMA model, which reflects only historical exchange rate trends, was validated as a model with a better predictive performance.