• Title/Summary/Keyword: SAR ocean image

Search Result 42, Processing Time 0.028 seconds

Space-based Ocean Surveillance and Support Capability: with a Focus on Marine Safety and Security (영해관리를 위한 인공위성 원격탐사기술)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.127-132
    • /
    • 2007
  • From the 1978 Seasat synthetic aperture radar(SAR) to present systems, spaceborne SAR has demonstrated the capability to image the Earth's ocean and land features over broad areas, day and night, and under most weather conditions. The application of SAR for surveillance of commercial fishing grounds can aid in the detection of illegal fishing activities and provides more efficient use of limited aircraft or patrol craft resources. In the area of vessel traffic monitoring for commercial vessels, Vessel Traffic Service (VTS) which uses the ground-based radar system has some difficulties in detecting moving ships due to the limited detection range of about 10 miles. This paper introduces the field testing results of ship detection by RADARSAT SAR imagery, and proposes a new approach for a Vessel Monitoring System(VMS), including VTS, and SAR combination service.

  • PDF

Algorithm to Estimate Oil Spill Area Using Digital Properties of Image

  • Jang, Hye-Jin;Nam, Jong-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.46-54
    • /
    • 2020
  • Oil spill accidents at sea result in a wide range of damages, including the destruction of ocean environments and ecosystems, as well as human illnesses by the generation of harmful gases caused by phase changes in crude oil. When an oil spill occurs, an immediate initial action should be performed to minimize the potential damage. Existing studies have attempted to identify crude oil spillage by calculating the crude oil spill range using synthetic aperture radar (SAR) satellite images. However, SAR cannot capture rapidly evolving events because of its low acquisition frequency. Herein, an algorithm for estimating an oil spill area from an image obtained using a digital camera is proposed. Noise that may occur in the image when it is captured is first eliminated by preprocessing, and then the image is analyzed. After analyzing the characteristics of the digital image, a strategy to binarize an image using the color, saturation, or lightness contained in it is adopted. It is found that the oil spill area can be readily estimated from a digital image, allowing for a faster analysis than any conventional method. The usefulness of the oil spill area measurement was confirmed by applying the developed algorithm to various oil spill images.

Velocity Estimation of Moving Targets on the Sea Surface by Azimuth Differentials of Simulated-SAR Image

  • Yang, Chang-Su;Kim, Youn-Seop;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.297-304
    • /
    • 2010
  • Since the change in Doppler centroid according to moving targets brings alteration to the phase in azimuth differential signals of synthetic aperture radar (SAR) data, one can measure the velocity of the moving targets using this effect. In this study, we will investigate theoretically measuring the velocity of an object from azimuth differential signals by using range compressed data which is the interim outcome of treatment from the simulated SAR raw data of moving targets on the background of sea clutter. Also, it will provide evaluation for the elements that affect the estimation error of velocity from a single SAR sensor. By making RADARSAT-1 simulated image as a specific case, the research includes comparisons for the means of velocity measurement classified by the directions of movement in the four following cases. 1. A case of a single target without currents, 2. A case of a single target with tidal currents of 0.5 m/s, 1 m/s, and 3 m/s, 3. A case of two targets on a same azimuth line moving in a same direction and velocity, 4. A case of a single target contiguous to land where radar backscatter is strong. As a result, when two moving targets exist in SAR image outside the range of approximately 256 pixels, the velocity of the object can be measured with high accuracy. However, when other moving targets exist in the range of approximately 128 pixels or when the target was contiguous to the land of strong backscatter coefficient (NRCS: normalized radar cross section), the estimated velocity was in error by 10% at the maximum. This is because in the process of assuming the target's location, an error occurs due to the differential signals affected by other scatterers.

Analyses on the sea surface wind field data by satellite remote sensing (위성원격탐사를 활용한 해양표면 바람장 자료 분석)

  • Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.149-157
    • /
    • 2008
  • If we use the microwave of SAR, we can observe ocean in spite of severe weather or night time. The sea surface image of SAR has numerous information about atmospheric phenomena related to surface wind field. The extracted wind information from SAR can be used diversely. In order to extract sea wind speed from SAR image, a generated wind direction from SAR and sigma nought should be input into wind model. Therefore, wind speed can be obtained by input wind direction into CMOD5 Model. Azimuth angle using CMOD5 Model is generated by added $90^{\circ}$ to Look angle which is extracted from SAR data file. A gained wind direction spectrum from SAR image has $180^{\circ}$ ambiguity because of 2D-FFT. This ambiguity should decide to use the location of land, wind direction in field or the result of numerical model. Consequently, wind direction using 2D-FFT is $3^{\circ}{\sim}7^{\circ}$ differences with actual surveying data. Wind speed by CMOD5 model is similar to actual surveying data as below 2m/s.

SATELLITE MONITORING OF OIL SPILLS CAUSED BY THE HEBEI SPIRIT ACCIDENT

  • Yang, Chan-Su;Yeom, Gi-Ho;Chang, Ji-Seong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.368-368
    • /
    • 2008
  • Oil spills are a principal factor of the ocean pollution. The complicated problems involved in detecting oil spills are usually due to varying wind and sea surface condition such as ocean wave and current. The Hebei Spirit accident was happened in the west sea ($36^{\circ}$41'04" N, $126^{\circ}$03'12" E) near about 8 km distant from Tae-An, Korea on December 7, 2007. The aim of this work is to improve the detection and classification performance in order to define a more accurate training set and identifying the feature of oil spill region. This paper deals with an optimization technique for the detection and classification scheme using multi-frequency and multi-polarization SAR and optical image data sets of the oil spilled sea. The used image data are the ENVISAT ASAR WS and Radarsat-1 of C-band and ALOS PALSAR of L-band SAR data and KOMPSAT-2 optical images together with meteorological or oceanographic data. Both the theory and the experimental results obtained are discussed.

  • PDF

Retrieval of Spherical Ocean Wave Parameters Using RADARSAT-2 SAR Sensor Observed at Chukk, Micronesia

  • Chaturvedi, Sudhir Kumar;Yang, Chan-Su;Song, Jung-Hwan;Ouchi, Kazuo;Shanmugam, P.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.213-223
    • /
    • 2011
  • The purpose of this study is to estimate the spherical wave parameters that appears in synthetic aperture radar (SAR) image acquired over the coast of Chukk, Micronesia. The retrieval of ocean wave parameters consists of two main stages: the first is to determine the dominant wavelengths by Fast Fourier Transform (FFT) over 16 sub-image areas and the second is to estimate wave slopes and heights using dispersion relationship under various water wave conditions. It is assumed that the spherical waves are linear and progressive. These type of waves have the range and azimuth components traveling in radial directions. The azimuth travelling waves are more affected by the velocity bunching mechanism and it is difficult to estimate the wave parameters for these affected areas in SAR imagery. In order to compensate these effects, the velocity bunching ratio (VBR) based on modulation transfer function (MTF) was compared with the intensity ratio for neighbor area in the radial direction in order to assign the spherical wave properties for azimuthally travelling waves. Dispersion relation provides the good estimates for the wave heights for all the selected sub-image areas in the range of 1m to 2m. VBR based on MTF was found to be 0.78 at wave height of 1.36m, while the intensity-based VBR was 0.69 which corresponds to the height of 1.75m. It can be said that the velocity bunching accounts for azimuthally travelling spherical waves and the difference results from the sea-bottom effects.

The Yellow-Sea Observation Using TerraSAR-X Image (TerraSAR-X 화상을 이용한 서해 연안 관측)

  • Kim, Youn-Seop;Yang, Chan-Su
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.155-158
    • /
    • 2009
  • 본 논문에서는 DLR(German Aerospace Center)에서 운영하는 TerraSAR-X를 이용하여 2009년 1월 19일 18:28 (Local time) 에 서해 대부도/제부도 및 대부도 남쪽 해안을 촬영한 stripmap mode (Dual-Pol: HH, VV) 화상을 취득하여 향후 고해상도 X-밴드 화상의 활용 방안 및 효용성에 대해 검토해 보았다. 함께 취득된 현장자료와의 비교를 통하여 2010 년에 발사될 예정인 아리랑 5 호의 활용방안을 찾고자 한다. 여기서는, 연안에 설치된 양식시설, 소형 선박 그리고 코너리플렉터에 대해서 해석을 수행하였다. 김 양식시설의 경우, 구조와 설치 각도에 따라 다른 후방산란특성을 보였으며, 같은 시설에 대해서도 HH 편파의 후방산란계수가 VV 보다 2.6 dB 높게 나타났다. 그 이유는 김 양식시설이 TeraSAR-X의 전파전파 방향과 수직하게 되어 후방 산란이 많이 일어나는 반면에, B 지역에 설치된 김 양식시설은 TeraSAR-X의 전파전파방향과 약 45 도 비스듬하게 설치되어 있어, 상대적으로 낮은 후방산란계수를 나타내기 때문이다. 또한 한 변의 길이가 각각 1 m, 0.6 m 인 사각면 삼각 수동 전파반사기 두 개를 제부도 북쪽의 갯벌에 설치하여 TerraSAR-X 의 화상에 나타난 후방산란특성을 분석하였다. TerraSAR-X 의 화상이 X-밴드를 사용하고, 높은 해상도로 인해 power spill이 넓게 분포하는 것을 볼 수 있다.

  • PDF

Report of Wave Glider Detecting by KOMPSAT-5 Spotlight Mode SAR Image (KOMPSAT-5 Spotlight Mode SAR 영상을 이용한 웨이브글라이더 탐지 사례 보고)

  • Lee, Yoon-Kyung;Kim, Sang-Wan;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.431-437
    • /
    • 2018
  • We analyzed the feasibility of detecting wave gliders moving on the sea surface using SAR images. For the experiment, a model was constructed and placed on the sea using a towing ship before and after the satellite observation time. In the acquisition of KOMPSAT-5 image, high resolution SAR data of spotlight mode was collected considering the small size of wave glider. As a result of the backscattering intensity analysis around the towing ship along with wave glider, several scattering points away from the ship were observed, which are not strong but clearly distinguished from the surrounding clutter values. Considering the distance from the center of the ship, it seems to be a signal by the wave glider. On the other hand, it is confirmed that the wave glider can be detected even at the very low false alarm rate ($10^{-6}$) of the target detection using CFAR. Although the scatter signal by the wave glider could be distinguished from the surrounding ocean clutter in the high resolution SAR image, further research is needed to determine if actual wave gliders are detected in various marine environments.

Study of Low Back-scattering Area on the SAR Image of Waters off the Southeast Coast of Korea (2000년 7월 한국 동남연안 SAR 영상의 낮은 후방산란 해역에 대한 고찰)

  • Kim, Tae-Rim;Park, Jong-Jip;Kim, Sang-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.109-114
    • /
    • 2010
  • This paper studies the origin of low back-scattering area appeared on the SAR image taken on the coastal waters off the southeast coast of Korea on July 5, 2000. Cold waters were frequently observed during summer on this coastal waters, and quasi-simultaneously taken AVHRR and SeaWiFS images also showed cold surface waters and high concentration of chlorophyll-a, respectively. By synergetic analysis of multi-sensor satellite images, it is strongly suggested that the cold and nutrient rich upwelling waters caused the high phytoplankton density and high biological activities in the water producing natural films for low back-scattering.

Study on the extraction of ocean parameters using SAR image data (SAR 영상자료률 이용한 해양 파라미터 추출 기법 연구)

  • Kang, Moon-Kyung;Park, Yong-Wook;Lee, Hoon-Yol;Lee, Moon-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.198-203
    • /
    • 2007
  • 최근 인공위성 SAR를 이용한 기술은 해풍,파랑,해류 등과 같은 해양에서 발생되는 다양한 현상을 관측하고 연구하는데 펼수적인 기술로 대두되고 있다. CMOD4, CMOD-IFR2 모델은 해상풍의 크기를 구할 수 있으며,wave-SAR 변환 기법과 inter-look cross-spectra 기법은 파랑의 크기,방향과 같은 물리적 값을 추출할 수 있다. 또한 Doppler shift 기법을 적용하여 해류속도를 구할 수 있다. 본 연구에서는 위의 기법들을 종합적으로 적용하여 SOP (SAR Ocean Processor) 프로세서를 개발하였다. 이 프로세서를 한반도 연안 지역에 적용하여 RADARSAT-1 영상자료로부터 해풍,파랑,해류의 물리적 정보를 추출하였으며,이를 현장 관련 자료와 비교하여 신뢰할만한 결과를 얻을 수 있었다.

  • PDF