• Title/Summary/Keyword: SAR Classification

Search Result 106, Processing Time 0.023 seconds

EFFICIENT SPECKLE NOISE FILTERING OF SAR IMAGES (SAR 영상의 SPECKLE 잡음 제거)

  • 김병수;최규홍;원중선
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.175-182
    • /
    • 1998
  • Any classification process using SAR images presupposes the reduction of multiplicative speckle noise, since the variations caused by speckle make it extremely difficult to distinguish between neighboring classes within the feature space. Therefore, several adaptive filter algorithms have been developed in order to distinguish between them. These algorithms aim at the preservation of edges and single scattering peaks, and smooths homogeneous areas as much as possible. This task is rendered more difficult by the multiplicative nature of the speckle noise the signal variation depends on the signal itself. In this paper, LEE(Lee 1908) and R-LEE(Lee 1981) filters using local statistics, local mean and variance, are applied to RADARSAT SAR images. Also, a new method of speckle filtering, EPOS(Edge Preserving Optimal Speckle)(Hagg & Sties 1994) filter based on the statistical properties of speckle noise is described and applied. And then, the results of filtering SAR images with LEE, R-LEE and EPOS filters are compared with mean and median filters.

  • PDF

INVESTIGATION OF BAIKDU-SAN VOLCANO WITH SPACE-BORNE SAR SYSTEM

  • Kim, Duk-Jin;Feng, Lanying;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.148-153
    • /
    • 1999
  • Baikdu-san was a very active volcano during the Cenozoic era and is believed to be formed in late Cenozoic era. Recently it was also reported that there was a major eruption in or around 1002 A.D. and there are evidences which indicate that it is still an active volcano and a potential volcanic hazard. Remote sensing techniques have been widely used to monitor various natural hazards, including volcanic hazards. However, during an active volcanic eruption, volcanic ash can basically cover the sky and often blocks the solar radiation preventing any use of optical sensors. Synthetic aperture radar(SAR) is an ideal tool to monitor the volcanic activities and lava flows, because the wavelength of the microwave signal is considerably longer that the average volcanic ash particle size. In this study we have utilized several sets of SAR data to evaluate the utility of the space-borne SAR system. The data sets include JERS-1(L-band) SAR, and RADARSAT(C-band) data which included both standard mode and the ScanSAR mode data sets. We also utilized several sets of auxiliary data such as local geological maps and JERS-1 OPS data. The routine preprocessing and image processing steps were applied to these data sets before any attempts of classifying and mapping surface geological features. Although we computed sigma nought ($\sigma$$^{0}$) values far the standard mode RADARSAT data, the utility of sigma nought image was minimal in this study. Application of various types of classification algorithms to identify and map several stages of volcanic flows was not very successful. Although this research is still in progress, the following preliminary conclusions could be made: (1) sigma nought (RADARSAT standard mode data) and DN (JERS-1 SAR and RADARSAT ScanSAR data) have limited usefulness for distinguishing early basalt lava flows from late trachyte flows or later trachyte flows from the old basement granitic rocks around Baikdu-san volcano, (2) surface geological structure features such as several faults and volcanic lava flow channels can easily be identified and mapped, and (3) routine application of unsupervised classification methods cannot be used for mapping any types of surface lava flow patterns.

  • PDF

The Potential of Satellite SAR Imagery for Mapping of Flood Inundation

  • Lee, Kyu-Sung;Hong, Chang-Hee;Kim, Yoon-Hyoung
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.128-133
    • /
    • 1998
  • To assess the flood damages and to provide necessary information for preventing future catastrophe, it is necessary to appraise the inundated area with more accurate and rapid manner. This study attempts to evaluate the potential of satellite synthetic aperture radar (SAR) data for mapping of flood inundated area in southern part of Korea. JERS L-band SAR data obtained during the summer of 1997 were used to delineate the inundated areas. In addition, Landsat TM data were also used for analyzing the land cover condition before the flooding. Once the two data sets were co-registered, each data was separately classified. The water surface areas extracted from the SAR data and the land cover map generated using the TM data were overlaid to determine the flood inundated areas. Although manual interpretation of water surfaces from the SAR image seems rather simple, the computer classification of water body requires clear understanding of radar backscattering behavior on the earth's surfaces. It was found that some surface features, such as rice fields, runaway, and tidal flat, have very similar radar backscatter to water surface. Even though satellite SAR data have a great advantage over optical remote sensor data for obtaining imagery on time and would provide valuable information to analyze flood, it should be cautious to separate the exact areas of flood inundation from the similar features.

  • PDF

Detection of Water Bodies from Kompsat-5 SAR Data (Kompsat-5 SAR 자료를 이용한 수체 탐지)

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.5
    • /
    • pp.539-550
    • /
    • 2016
  • Detection of water bodies in land surface is an essential part of disaster monitoring, such as flood, storm surge, and tsunami, and plays an important role in analyzing spatial and temporal variation of water cycle. In this study, a quantitative comparison of different thresholding-based methods for water body detection and their applicability to Kompsat-5 SAR data were presented. In addition, the effect of speckle filtering on the detection result was analyzed. Furthermore, the variations of threshold values by the proportion of the water body area in the whole image were quantitatively evaluated. In order to improve the binary classification performance, a new water body detection algorithm based on the bimodality test and the majority filtering is presented.

Classification for Landfast Ice Types in the Greenland of the Arctic by Using Multifrequency SAR Images (다중주파수 SAR 영상을 이용한 북극해 그린란드 정착빙 분류)

  • Hwang, Do-Hyun;Hwang, Byongjun;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • To classify the landfast ice in the north of the Greenland, observation data, multifrequency Synthetic Aperture Radar (SAR) images and texture images were used. The total four types of sea ice are first year ice, highly deformed ice, ridge and moderately deformed ice. The texture images that were processed by K-means algorithm showed higher accuracy than the ones that were processed by SAR images; however, overall accuracy of maximum likelihood algorithm using texture images did not show the highest accuracy all the time. It turned out that when using K-means algorithm, the accuracy of the multi SAR images were higher than the single SAR image. When using the maximum likelihood algorithm, the results of single and multi SAR images are differ from each other, therefore, maximum likelihood algorithm method should be used properly.

Crop classification using multiple frequency polarimetric SAR data (다중 주파수 편광 SAR 자료를 이용한 농작물 분류)

  • Park, No-Wook;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.234-237
    • /
    • 2007
  • 이 연구에서는 C 밴드와 L 밴드 다편광 NASA JPL AirSAR 자료를 농작물 구분에 사용함에 있어서 자료 융합의 효과를 살펴보고자 하였다. Target decomposition으로부터 얻어지는 산란특성과 관련된 특징들을 입력으로 support vector machines을 개별 파장대 편광 SAR 자료의 분류에 이용하였으며 C 밴드와 L 밴드 자료의 사후확률을 ${\tau}$모델을 이용하여 융합하였다. 적용 결과 L 밴드 자료가 C 밴드 자료에 비해 농작물 구분에 적절한 투과 심도를 나타내어 상대적으로 높은 분류 정확도를 나타내었지만,자료 융합을 통해 보다 향상된 분류 정확도를 얻을 수 있었다. 이 연구에서 제시된 방법론은 앞으로 이용이 가능할 C 밴드 Radarsat-2 자료와 L 밴드 ALOS 자료에 적용이 가능할 것으로 판단된다.

  • PDF

Iceberg-Ship Classification in SAR Images Using Convolutional Neural Network with Transfer Learning

  • Choi, Jeongwhan
    • Journal of Internet Computing and Services
    • /
    • v.19 no.4
    • /
    • pp.35-44
    • /
    • 2018
  • Monitoring through Synthesis Aperture Radar (SAR) is responsible for marine safety from floating icebergs. However, there are limits to distinguishing between icebergs and ships in SAR images. Convolutional Neural Network (CNN) is used to distinguish the iceberg from the ship. The goal of this paper is to increase the accuracy of identifying icebergs from SAR images. The metrics for performance evaluation uses the log loss. The two-layer CNN model proposed in research of C.Bentes et al.[1] is used as a benchmark model and compared with the four-layer CNN model using data augmentation. Finally, the performance of the final CNN model using the VGG-16 pre-trained model is compared with the previous model. This paper shows how to improve the benchmark model and propose the final CNN model.

Validation of DEM Derived from ERS Tandem Images Using GPS Techniques

  • Lee, In-Su;Chang, Hsing-Chung;Ge, Linlin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.1 s.31
    • /
    • pp.63-69
    • /
    • 2005
  • Interferometric Synthetic Aperture Radar(InSAR) is a rapidly evolving technique. Spectacular results obtained in various fields such as the monitoring of earthquakes, volcanoes, land subsidence and glacier dynamics, as well as in the construction of Digital Elevation Models(DEMs) of the Earth's surface and the classification of different land types have demonstrated its strength. As InSAR is a remote sensing technique, it has various sources of errors due to the satellite positions and attitude, atmosphere, and others. Therefore, it is important to validate its accuracy, especially for the DEM derived from Satellite SAR images. In this study, Real Time Kinematic(RTK) GPS and Kinematic GPS positioning were chosen as tools for the validation of InSAR derived DEM. The results showed that Kinematic GPS positioning had greater coverage of test area in terms of the number of measurements than RTK GPS. But tracking the satellites near and/or under trees md transmitting data between reference and rover receivers are still pending tasks in GPS techniques.

  • PDF

Feature Extraction and Fusion for land-Cover Discrimination with Multi-Temporal SAR Data (다중 시기 SAR 자료를 이용한 토지 피복 구분을 위한 특징 추출과 융합)

  • Park No-Wook;Lee Hoonyol;Chi Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.145-162
    • /
    • 2005
  • To improve the accuracy of land-cover discrimination in SAB data classification, this paper presents a methodology that includes feature extraction and fusion steps with multi-temporal SAR data. Three features including average backscattering coefficient, temporal variability and coherence are extracted from multi-temporal SAR data by considering the temporal behaviors of backscattering characteristics of SAR sensors. Dempster-Shafer theory of evidence(D-S theory) and fuzzy logic are applied to effectively integrate those features. Especially, a feature-driven heuristic approach to mass function assignment in D-S theory is applied and various fuzzy combination operators are tested in fuzzy logic fusion. As experimental results on a multi-temporal Radarsat-1 data set, the features considered in this paper could provide complementary information and thus effectively discriminated water, paddy and urban areas. However, it was difficult to discriminate forest and dry fields. From an information fusion methodological point of view, the D-S theory and fuzzy combination operators except the fuzzy Max and Algebraic Sum operators showed similar land-cover accuracy statistics.

SATELLITE MONITORING OF OIL SPILLS CAUSED BY THE HEBEI SPIRIT ACCIDENT

  • Yang, Chan-Su;Yeom, Gi-Ho;Chang, Ji-Seong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.368-368
    • /
    • 2008
  • Oil spills are a principal factor of the ocean pollution. The complicated problems involved in detecting oil spills are usually due to varying wind and sea surface condition such as ocean wave and current. The Hebei Spirit accident was happened in the west sea ($36^{\circ}$41'04" N, $126^{\circ}$03'12" E) near about 8 km distant from Tae-An, Korea on December 7, 2007. The aim of this work is to improve the detection and classification performance in order to define a more accurate training set and identifying the feature of oil spill region. This paper deals with an optimization technique for the detection and classification scheme using multi-frequency and multi-polarization SAR and optical image data sets of the oil spilled sea. The used image data are the ENVISAT ASAR WS and Radarsat-1 of C-band and ALOS PALSAR of L-band SAR data and KOMPSAT-2 optical images together with meteorological or oceanographic data. Both the theory and the experimental results obtained are discussed.

  • PDF