• Title/Summary/Keyword: SA508 Gr.3

Search Result 24, Processing Time 0.03 seconds

Dynamic Stress Intensity Factor and Dynamic Crack Propagation Velocity in Nuclear Pressure Vessel Steels (원자로압력용기강의 동적 응력확대계수와 동적 균열전파속도)

  • Lee, O.S.;Han, M.K.;Han, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.251-257
    • /
    • 1998
  • 동적 파괴인성치 측정시스템과 동적 2차원 유한요소해석 프로그램을 개발하여 원자로압력용기에 사용하는 강(SA508 cl.3, SA516 gr.70)의 동적 파괴인성치와 동적 균열정지인성치를 평가하고 이에 대한 유용성을 확인하였으며, 이 시스템 을 이용하여 재료의 동적 파괴특성을 규명하였다. SA508 cl.3와 SA516 gr.70의 동적 균열전파속도(a)에 대응하는 동적 응력확대계수 (K(a))에 대한 실험식을 얻었으며, 동적 응력확대계수와 동적 균열전파속도와의 관계는 전형적인 "$\Gamma$" 형으로 나타남을 확인하였다.

  • PDF

Thermodynamic Calculation and Observation of Microstructural Change in Ni-Mo-Cr High Strength Low Alloy RPV Steels with Alloying Elements (압력용기용 Ni-Mo-Cr계 고강도 저합금강의 합금원소 함량 변화에 따른 미세조직학적 특성변화의 열역학 계산 및 평가)

  • Park, Sang Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.771-779
    • /
    • 2008
  • An effective way of increasing the strength and fracture toughness of reactor pressure vessel steels is to change the material specification from that of Mn-Mo-Ni low alloy steel(SA508 Gr.3) to Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on the microstructural characteristics of Ni-Mo-Cr low alloy steel. The changes in the stable phase of the SA508 Gr.4N low alloy steel with alloying elements were evaluated by means of a thermodynamic calculation conducted with the software ThermoCalc. The changes were then compared with the observed microstructural results. The calculation of Ni-Mo-Cr low alloy steels confirms that the ferrite formation temperature decreases as the Ni content increases because of the austenite stabilization effect. Consequently, in the microscopic observation, the lath martensitic structure becomes finer as the Ni content increases. However, Ni does not affect the carbide phases such as $M_{23}C_6 $ and $M_7C_3$. When the Cr content decreases, the carbide phases become unstable and carbide coarsening can be observed. With an increase in the Mo content, the $M_2C$ phase becomes stable instead of the $M_7C_3$ phase. This behavior is also observed in TEM. From the calculation results and the observation results of the microstructure, the thermodynamic calculation can be used to predict the precipitation behavior.

Evaluation of Fracture Toughness for SA508 Gr. 3 Reactor Pressure Vessel Steel Using Bimodal Master Curve Approach (이봉분포 마스터커브를 이용한 SA508 Gr. 3 원자로용기강의 파괴인성 평가)

  • Kim, Jong Min;Kim, Min Chul;Lee, Bong Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.60-66
    • /
    • 2017
  • The standard master curve (MC) approach has the major limitation because it is only applicable to homogeneous datasets. In nature, materials are macroscopically inhomogeneous and involve scatter of fracture toughness data due to various deterministic material inhomogeneity and random inhomogeneity. RPV(reactor pressure vessel) steel has different fracture toughness with varying distance from the inner surface of the wall due to cooling rate in manufacturing process; deterministic inhomogeneity. On the other hand, reference temperature, $T_0$, used in the evaluation of fracture toughness is acting as a random parameter in the evaluation of welding region; random inhomogeneity. In the present paper, four regions, the surface, 1/8T, 1/4T and 1/2T, were considered for fracture toughness specimens of KSNP (Korean Standard Nuclear Plant) SA508 Gr. 3 steel to investigate deterministic material inhomogeneity and random inhomogeneity. Fracture toughness tests were carried out for four regions and three test temperatures in the transition region. Fracture toughness evaluation was performed using the bimodal master curve (BMC) approach which is applicable to the inhomogeneous material. The results of the bimodal master curve analyses were compared with that of conventional master curve analyses. As a result, the bimodal master approach considering inhomogeneous materials provides better description of scatter in fracture toughness data than conventional master curve analysis. However, the difference in the $T_0$ determined by two master curve approaches was insignificant.

Evaluation of Mechanical Properties of Alloy 82/182 Weld Joint Between SA508 Gr.3 Nozzle and F316L Safe-End (SA508 Gr.3 노즐과 F316L 안전단 사이의 Alloy 82/182 용접부에 대한 기계적물성치 평가)

  • Kim, Jin-Weon;Lee, Kyung-Soo;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.333-340
    • /
    • 2010
  • This paper presents the distributions of the tensile and fracture properties of an alloy 82/182 dissimilar weld joint between an SA508 Gr.3 nozzle and F316L SS safe-end at ambient temperature. Tensile and J-R tests were conducted using specimens extracted from base metals, heat-affected zones (HAZs), buttering regions, and various regions of the weld metal. The results show that the root region of the weld has higher strength than the upper region. The yield and tensile strengths vary considerably within the root region of the weld. The buttering region had the lowest strengths. The strengths gradually increased as the F316L stainless steel weld boundary was approached. The variation of the strengths within the upper region of the weld is insignificant. The fracture toughness of the alloy 82/182 weld metal is less than those of both the base metals and both HAZs. Within the alloy 82/182 weld, the center of weld has a slightly lower fracture toughness than the weld boundary and buttering region, and the root region has greater toughness than the upper region of the weld.

EFFECT OF CYCLIC STRAIN RATE AND SULFIDES ON ENVIRONMENTALLY ASSISTED CRACKING BEHAVIORS OF SA508 GR. 1A LOW ALLOY STEEL IN DEOXYGENATED WATER AT 310℃

  • Jang, Hun;Cho, Hyun-Chul;Jang, Chang-Heui;Kim, Tae-Soon;Moon, Chan-Kook
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • To understand the effect of the cyclic strain rate on the environmentally assisted cracking behaviors of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$, the fatigue surface and a sectioned area of specimens were observed after low cycle fatigue tests. On the fatigue surface of the specimen tested at a strain rate of 0.008 %/s, unclear ductile striations and a blunt crack tip were observed. Therefore, metal dissolution could be the main cracking mechanism of the material at this strain rate. On the other hand, on the fatigue surfaces of the specimens tested at strain rates of 0.04 and 0.4 %/s, brittle cracks and flat facets, which are evidences of the hydrogen induced cracking, were observed. In addition, a tendency of linkage between the main crack and the micro-cracks was observed on the sectioned area. Therefore, at higher strain rates, the main cracking mechanism could be hydrogen induced cracking. Additionally, evidence of the dissolved MnS inclusions was observed on the fatigue surface from energy dispersive x-ray spectrometer analyses. Thus, despite the low sulfur content of the test material, the sulfides seem to contribute to environmentally assisted cracking of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$.

EFFECTS OF TEMPERING AND PWHT ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SA508 GR.4N STEEL

  • Lee, Ki-Hyoung;Jhung, Myung Jo;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.413-422
    • /
    • 2014
  • Presented in this study are the variations of microstructures and mechanical properties with tempering and Post-Weld Heat Treatment (PWHT) conditions for SA508 Gr.4N steel used as Reactor Pressure Vessel (RPV) material. The blocks of model alloy were austenitized at the conventional temperature of $880^{\circ}C$ then tempered and post-weld heat treated at four different conditions. The hardness and yield strength decrease with increased tempering and PWHT temperatures, but impact toughness is significantly improved, especially in the specimens tempered at $630^{\circ}C$. The sample tempered at $630^{\circ}C$ with PWHT at $610^{\circ}C$ shows optimum mechanical properties in hardness, strength, and toughness, excluding only the transition property in the low temperature region. The microstructural observation and quantitative analysis of carbide size distribution show that the variations of mechanical properties are caused by the under-tempering and carbide coarsening which occurred during the heat treatment process. The introduction of PWHT results in the deterioration of the ductile-brittle transition property by an increase of coarse carbides controlling cleavage initiation, especially in the tempered state at $630^{\circ}C$.

Characterization of Mechanical Properties in the Heat Affected Zones of Alloy 82/182 Dissimilar Metal Weld Joint (Alloy 82/182 이종금속 용접부 열영향부의 계계적물성치 파악)

  • Kim, Jin-Weon;Kim, Jong-Sung;Lee, Kyoung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.28-33
    • /
    • 2008
  • This paper presents the characteristics of mechanical properties within the heat affected zones(HAZs) of dissimilar metal weld joint between SA508 Gr.1a and F3l6 stainless steel(SS) with Alloy 82/182 filler metal. Tensile tests were performed using small-size specimens taken from the heat affected regions close to both fusion lines of weld, and the micro-structures were examined using optical microscope(OM) and transmission microscope(TEM). The results showed that significant gradients of the yield stress(YS), ultimate tensile stress(UTS), and elongations were observed within the HAZ of SA508 Gr.1a. This was attributed to the different microstructures within the HAZ developed during the welding process. In the HAZ of F316 SS, however, the welding effect dominated the YS and elongation rather than UTS. TEM micrographs demonstrated these characteristics of the HAZ of F316 SS was associated with a dislocation-induced strain hardening.

Evaluation of Deformation Behavior of Nuclear Structural Materials under Cyclic Loading Conditions via Cyclic Stress-Strain Test (반복 응력-변형률 시험을 통한 반복하중 조건에서 원전 주요 구조재료의 변형거동 평가)

  • Kim, Jin Weon;Kim, Jong Sung;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.75-83
    • /
    • 2017
  • This study investigated deformation behavior of major nuclear structural materials under cyclic loading conditions via cyclic stress-strain test. The cyclic stress-strain tests were conducted on SA312 TP316 stainless steel and SA508 Gr.3 Cl.1 low-alloy steel, which are used as materials for primary piping and reactor pressure vessel nozzle respectively, under cyclic load with constant strain amplitude and constant load amplitude at room temperature (RT) and $316^{\circ}C$. From the results of tests, the cyclic hardening and softening behavior, stabilized cyclic stress-strain behavior, and ratcheting behavior of both materials were investigated at both RT and $316^{\circ}C$. In addition, appropriate considerations for cyclic deformation behavior in the structural integrity evaluation of major nuclear components under excessive seismic condition were discussed.

Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel (Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가)

  • Kim, Hong-Eun;Lee, Ki-Hyoung;Kim, Min-Chul;Lee, Ho-Jin;Kim, Keong-Ho;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.