• Title/Summary/Keyword: SA508 Gr.1a Piping Material

Search Result 8, Processing Time 0.023 seconds

Leak-Before-Break Assessment Margin Analysis of Improved SA508-Gr.1a Pipe Material (개선된 SA508-Gr.1a 배관재의 파단전누설평가 여유도 분석)

  • Kim, Maan-Won;Lee, Yo-Seob;Shin, In-Whan;Yang, Jun-Seog;Kim, Hong-Deok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • The effect of improving the tensile and J-R fracture toughness properties of SA508 Gr.1a on the LBB margin for the main steam pipe is investigated. The material properties and microstructure images of the existing main steam piping material SA106 Gr.C used in domestic nuclear power plants and the newly selected material SA508 Gr.1a were compared. For each material, LBB margins were calculated and compared through finite element analysis and crack instability evaluation. The LBB margin of the improved SA508 Gr.1a is found to be greatly improved compared to that of the existing SA106 Gr.C and SA508 Gr.1a. This is because of the increased material's strength and J-R fracture toughness compared to the previous materials. In order to analyze the effect of physical property change on the LBB margin, the sensitivity of each LBB margin according to the variation of tensile strength and J-R fracture toughness was analyzed. The effect of the change in tensile strength was found to be greater than that of the change in fracture toughness. Therefore, an increase in strength significantly influenced the improvement of the LBB margin of the improved SA508 Gr.1a.

Effect of Loading Rate on the Fracture Behavior of Nuclear Piping Materials Under Cyclic Loading Conditions

  • Kim, Jin Weon;Choi, Myung Rak;Kim, Yun Jae
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1376-1386
    • /
    • 2016
  • This study investigated the loading rate effect on the fracture resistance under cyclic loading conditions to understand clearly the fracture behavior of piping materials under seismic conditions. J-R fracture toughness tests were conducted under monotonic and cyclic loading conditions at various displacement rates at room temperature and the operating temperature of nuclear power plants (i.e., $316^{\circ}C$). SA508 Gr.1a low-alloy steel and SA312 TP316 stainless steel piping materials were used for the tests. The fracture resistance under a reversible cyclic load was considerably lower than that under monotonic load regardless of test temperature, material, and loading rate. Under both cyclic and monotonic loading conditions, the fracture behavior of SA312 TP316 stainless steel was independent of the loading rate at both room temperature and $316^{\circ}C$. For SA508 Gr.1a lowalloy steel, the loading rate effect on the fracture behavior was appreciable at $316^{\circ}C$ under cyclic and monotonic loading conditions. However, the loading rate effect diminished when the cyclic load ratio of the load (R) was -1. Thus, it was recognized that the fracture behavior of piping materials, including seismic loading characteristics, can be evaluated when tested under a cyclic load of R = -1 at a quasistatic loading rate.

Effects of Specimen Size and Side-groove on the Results of J-R Fracture Toughness Test for LBB Evaluation (LBB 평가를 위한 J-R 파괴인성시험 결과에 미치는 시편 형상과 측면 홈의 영향)

  • Kim, Jin Weon;Choi, Myung Rak;Oh, Young Jin;Park, Heung Bae;Kim, Kyung Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.729-736
    • /
    • 2015
  • In this study, the effects of specimen size and side-groove on the results of the J-R test for leak-before-break (LBB) evaluation were investigated. A series of J-R tests were conducted at both RT and $316^{\circ}C$, using three different sizes of compact tension (CT) specimens machined from SA508 Gr.1a piping material: 12.7 mm-thick 1T-CT, 25.4 mm-thick 1T-CT, and 25.4 mm-thick 2T-CT with and without side-groove. The results showed that side-grooving reduced the J-R curve for all specimens and the effect of side-grooving was more significant at $316^{\circ}C$ than at RT. As the thickness of the specimens decreased and the width of the specimens increased, the J-R curve slightly decreased at RT but it increased at $316^{\circ}C$. However, the variation in the J-R curve of SA508 Gr.1a with the thickness and width of CT specimen was insignificant.

Fatigue Life Analysis of SA508 Gr. 1A Low-Alloy Steel under the Operating Conditions of Nuclear Power Plant (원자력발전소 운전환경에서 SA508 Gr. 1A 저합금강의 피로 수명 분석)

  • Lee, Yong Sung;Kim, Tae Soon;Lee, Jae Gon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • Fatigue has been known as a major degradation mechanism of ASME class 1 components in nuclear power plants. Fatigue damage could be accelerated by combined interaction of several loads and environmental factors. However, the environmental effect is not explicitly addressed in the ASME S-N curve which is based on air at room temperature. Therefore many studies have been performed to understand the environmental effects on fatigue behavior of materials used in nuclear power plants. As a part of efforts, we performed low cycle fatigue tests under various environmental conditions and analyzed the environmental effects on the fatigue life of SA508 Gr. 1a low alloy steel by comparing with higuchi's model. Test results show that the fatigue life depends on water temperature, dissolved oxygen and strain rate. But strain rate over 0.4%/s has little effect on the fatigue life. To find the cause of different fatigue life with ANL's and higuchi's model, another test performed with different heat numbered and heat treated materials of SA508 Gr. 1a. On a metallurgical point of view, the material with bainite microstructure shows much longer fatigue life than that with ferrite/pearlite microstructure. And the characteristics of crack propagation as different microstructure seem to be the main cause of different fatigue life.

  • PDF

Evaluation of Fracture Toughness for SA508 Gr. 3 Reactor Pressure Vessel Steel Using Bimodal Master Curve Approach (이봉분포 마스터커브를 이용한 SA508 Gr. 3 원자로용기강의 파괴인성 평가)

  • Kim, Jong Min;Kim, Min Chul;Lee, Bong Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.60-66
    • /
    • 2017
  • The standard master curve (MC) approach has the major limitation because it is only applicable to homogeneous datasets. In nature, materials are macroscopically inhomogeneous and involve scatter of fracture toughness data due to various deterministic material inhomogeneity and random inhomogeneity. RPV(reactor pressure vessel) steel has different fracture toughness with varying distance from the inner surface of the wall due to cooling rate in manufacturing process; deterministic inhomogeneity. On the other hand, reference temperature, $T_0$, used in the evaluation of fracture toughness is acting as a random parameter in the evaluation of welding region; random inhomogeneity. In the present paper, four regions, the surface, 1/8T, 1/4T and 1/2T, were considered for fracture toughness specimens of KSNP (Korean Standard Nuclear Plant) SA508 Gr. 3 steel to investigate deterministic material inhomogeneity and random inhomogeneity. Fracture toughness tests were carried out for four regions and three test temperatures in the transition region. Fracture toughness evaluation was performed using the bimodal master curve (BMC) approach which is applicable to the inhomogeneous material. The results of the bimodal master curve analyses were compared with that of conventional master curve analyses. As a result, the bimodal master approach considering inhomogeneous materials provides better description of scatter in fracture toughness data than conventional master curve analysis. However, the difference in the $T_0$ determined by two master curve approaches was insignificant.

Sensitivity Study on Creep Behaviors of RPV under Severe Accident conditions (중대사고 조건하의 원자로용기 크리프 거동 민감도 분석 연구)

  • Kim, Tae Hyun;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2017
  • Reactor pressure vessel (RPV) under severe accident conditions accompanied by core melting is exposed to direct high-temperature thermal loads. Understanding the creep behavior of the material is one of the most important factors for evaluating the structural integrity at these conditions. While damage evaluation studies have been conducted on critical structures of nuclear power plants through finite element (FE) analyses considering creep behavior, for accurate creep damage evaluation, constitutive equations considered in the FE analyses may have different results depending on the time hardening and strain hardening models as well as the tertiary creep consideration. The purpose of this study is to evaluate the creep damage under severe accident conditions by using FE method for a representative domestic RPV material, SA508 Gr.3. The effect of material hardening models and constitutive equations which are the main variables were also investigated.

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

Evaluation of the Effect of Fracture Resistance Curve Change Owing to the Presence or Absence of Side Groove in C(T) Specimen on Finite Element Failure Model Parameter Determination (C(T) 시편 측면 홈 유무에 따른 파괴저항곡선 변화가 유한요소 손상모델 변수 결정에 미치는 영향 평가)

  • Kim, Hune-Tae;Ryu, Ho-Wan;Kim, Yun-Jae;Kim, Jong-Sung;Choi, Myung-Rak;Kim, Jin-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.539-546
    • /
    • 2016
  • In this paper, the effect of J-R curve changes on the determination of parameters in a failure model owing to the presence or absence of a side groove in a C(T) specimen is investigated. A stress-modified fracture strain model is implemented for FE damage simulations. C(T) specimens were taken from SA508 grade 1a low-alloy steel piping material, and some of them were processed with a side groove. Fracture toughness tests were performed at room temperature and at $316^{\circ}C$. The parameters of the failure model were determined by damage simulations using the J-R curves obtained from the tests. Finally, the results show that the determination of failure model parameters is not affected by variations in J-R curves owing to the presence or absence of a side groove.