Browse > Article
http://dx.doi.org/10.3795/KSME-A.2016.40.6.539

Evaluation of the Effect of Fracture Resistance Curve Change Owing to the Presence or Absence of Side Groove in C(T) Specimen on Finite Element Failure Model Parameter Determination  

Kim, Hune-Tae (Dept. of Mechanical Engineering, Korea Univ.)
Ryu, Ho-Wan (Dept. of Mechanical Engineering, Korea Univ.)
Kim, Yun-Jae (Dept. of Mechanical Engineering, Korea Univ.)
Kim, Jong-Sung (Dept. of Nuclear Engineering, Sejong Univ.)
Choi, Myung-Rak (Dept. of Nuclear Energy Engineering, Chosun Univ.)
Kim, Jin-Weon (Dept. of Nuclear Energy Engineering, Chosun Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.40, no.6, 2016 , pp. 539-546 More about this Journal
Abstract
In this paper, the effect of J-R curve changes on the determination of parameters in a failure model owing to the presence or absence of a side groove in a C(T) specimen is investigated. A stress-modified fracture strain model is implemented for FE damage simulations. C(T) specimens were taken from SA508 grade 1a low-alloy steel piping material, and some of them were processed with a side groove. Fracture toughness tests were performed at room temperature and at $316^{\circ}C$. The parameters of the failure model were determined by damage simulations using the J-R curves obtained from the tests. Finally, the results show that the determination of failure model parameters is not affected by variations in J-R curves owing to the presence or absence of a side groove.
Keywords
Finite Element Analysis; Damage Simulation; Stress-Modified Fracture Strain Model; J-R Fracture Toughness Test; Side Groove;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Han, J. J., Bae, K. D., Kim, Y. J., Kim, J. H. and Kim, N. H., 2014, "Finite Element Based Multi-Scale Ductile Failure Simulation of Full-Scale Pipes with a Circumferential Crack in a Low Carbon Steel," Trans. Korean Soc. Mech. Eng. A, Vol. 38, No. 7, pp. 727-734.   DOI
2 Yasufumi, I. and Tomokazu, M., 1982, "Effect of Side Grooves on the Elastic-plastic Stress State of Fracture Toughness Specimens - Three-dimensional Finite Element Analysis," Engineering Fracture Mechanics, 16.5, pp. 659-668.   DOI
3 McClintock, F. A., 1968, "A Criterion of Ductile Fracture by the Growth of Holes," Journal of Applied Mechanics, 35.2, pp. 363-371.   DOI
4 Rice, J. R. and Tracey, D. M., 1969, "On the Ductile Enlargement of Voids in Triaxial Stress Fields," Journal of the Mechanics and Physics of Solids, 17.3, pp. 201-217.   DOI
5 Hancock, J. W. and Mackenzie, A. C., 1976, "On the Mechanisms of Ductile Failure in High-strength Steels Subject to Multi-axial Stress States," Journal of the Mechanics and Physics of Solids, 24.2-3, pp. 147-160.   DOI
6 Arndt, J. and Dahl, W., 1997, "Effect of Void Growth and Shape on the Initiation of Ductile Failure of Steels," Computational materials science, 9.1, pp. 1-6.   DOI
7 Kanvinde, A. M. and Deierlein, G. G., 2006, "The Void Growth Model and the Stress Modified Critical Strain Model to Predict Ductile Fracture in Structural Steels," Journal of Structural Engineering, 132.12, pp. 1907-1918.   DOI
8 Kim, J. W., Choi, M. R., Oh, Y. J., Park, H. B. and Kim, K. S., 2014, "Effects of Specimen Size and Sidegroove on the Results of J-R Fracture Toughness Test for LBB Evaluation," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 7, pp. 729-736.   DOI
9 ASTM Standard E8/E8M, 2009, "Standard Test Methods for Tension Testing of Metallic Materials," ASTM International.
10 ASTM Standard E1820, 2011, "Standard Test Method for Measurement of Fracture Toughness," ASTM International.
11 Kim, N. H., Oh, C. S., Kim, Y. J., Yoon, K. B. and Ma, Y. H., 2011, "Comparison of Fracture Strain Based Ductile Failure Simulation with Experimental Results," International Journal of Pressure Vessels and Piping, 88.10, pp. 434-447.   DOI
12 Oh, C. S., Kim, N. H., Kim, Y. J., Baek, J. H., Kim, Y. P. and Kim, W. S., 2010, "A Finite Element Ductile Failure Simulation Method Using Stress-modified Fracture Strain Model," Engineering Fracture Mechanics, 78.1, pp. 124-137.   DOI
13 Hancock, J. W. and Cowling, M. J., 1980, "Role of State of Stress in Crack-tip Failure Processes," Metal Science, 14.8-9, pp. 293-304.   DOI
14 Mackenzie, A. C., Hancock, J. W. and Brown, D. K., 1977, "On the Influence of State of Stress on Ductile Failure Initiation in High Strength Steels," Engineering Fracture Mechanics, 9.1, pp. 167-188.   DOI
15 Dassault Systemes, 2013, ABAQUS User's Manual, Version 6.13.
16 Oh, C. K., Kim, Y. J., Baek, J. H., Kim, Y. P. and Kim W. S., 2007, "Ductile Failure Analysis of API X65 Pipes with Notch-type Defects Using a Local Fracture Criterion," International Journal of Pressure Vessels and Piping, Vol. 84, No. 8, pp. 512-525.   DOI
17 Ewing, D. J. F. and Hill, R., 1967, "The Plastic Constraint of V-notched Tension Bars," Journal of the Mechanics and Physics of Solids, Vol. 15, No. 2, pp. 115-124.   DOI