• Title/Summary/Keyword: SA-${\beta}$-Gal

Search Result 28, Processing Time 0.035 seconds

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes

  • Bang, Minji;Kim, Do Gyeong;Gonzales, Edson Luck;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.530-539
    • /
    • 2019
  • Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.

Anti-oxidant and Anti-aging Activities of Sericinjam Gland Hydrolysate Extract in Human Dermal Fibroblasts (사람 섬유아세포에서 세리신잠 실샘가수분해물(Sericinjam Gland Hydrolysate)의 항산화 및 항노화 효과)

  • Cheon, Yuri;Hwang, Jung Wook;Lee, Heui Sam;Yun, Seiyoung;Choi, Yong-Soo;Kang, Sangjin
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • We studied the anti-oxidant and anti-aging activities of Sericinjam Gland Hydrolysate (SJGH) in the human dermal fibroblasts. SJGH effectively defended cell death and ROS generation under high H2O2 in human dermal fibroblasts. Moreover SJGH reduced the expression of SA-${\beta}$-Gal and MMP-1 under low concentration of $H_2O_2$ whereas biosynthesis of procollagen-I was increased. This results demonstrate the anti-oxidant and anti-aging activities of SJGH. SJGH could be a good candidate for anti-aging cosmetics ingredient.

Senescence as A Consequence of Ginsenoside Rg1 Response on K562 Human Leukemia Cell Line

  • Liu, Jun;Cai, Shi-Zhong;Zhou, Yue;Zhang, Xian-Ping;Liu, Dian-Feng;Jiang, Rong;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6191-6196
    • /
    • 2012
  • Aims and Background: Traditional chemotherapy strategies for human leukemia commonly use drugs based on cytotoxicity to eradicate cancer cells. One predicament is that substantial damage to normal tissues is likely to occur in the course of standard treatments. Obviously, it is urgent to explore therapies that can effectively eliminate malignant cells without affecting normal cells. Our previous studies indicated that ginsenoside $Rg_1$ ($Rg_1$), a major active pharmacological ingredient of ginseng, could delay normal hematopoietic stem cell senescence. However, whether $Rg_1$ can induce cancer cell senescence is still unclear. Methods: In the current study, human leukemia K562 cells were subjected to $Rg_1$ exposure. The optimal drug concentration and duration with K562 cells was obtained by MTT colorimetric test. Effects of $Rg_1$ on cell cycle were analyzed using flow cytometry and by SA-${\beta}$-Gal staining. Colony-forming ability was measured by colony-assay. Telomere lengths were assessed by Southern blotting and expression of senescence-associated proteins P21, P16 and RB by Western blotting. Ultrastructural morphology changes were observed by transmission electron microscopy. Results: K562 cells demonstrated a maximum proliferation inhibition rate with an $Rg_1$ concentration of $20{\mu}\;mol{\cdot}L^{-1}$ for 48h, the cells exhibiting dramatic morphological alterations including an enlarged and flat cellular morphology, larger mitochondria and increased number of lysosomes. Senescence associated-${\beta}$-galactosidase (SA-${\beta}$-Gal) activity was increased. K562 cells also had decreased ability for colony formation, and shortened telomere length as well as reduction of proliferating potential and arrestin $G_2$/M phase after $Rg_1$ interaction. The senescence associated proteins P21, P16 and RB were significantly up-regulated. Conclusion: Ginsenoside $Rg_1$ can induce a state of senescence in human leukemia K562 cells, which is associated with p21-Rb and p16-Rb pathways.

Change in the Levels of Intracellular Antioxidants during Aging of Articular Chondrocytes and Cartilage (연골세포 및 관절연골의 노화 과정에서 세포내 항산화 인자들의 변화)

  • Kim, Kang Mi;Kim, Yoon Jae;Kim, Jong Min;Sohn, Dong Hyun;Park, Young Chul
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.888-894
    • /
    • 2019
  • Cartilage diseases, such as rheumatoid arthritis (RA) and osteoarthritis (OA), are associated with the loss of chondrocytes and degradation of articular cartilage. Recent studies revealed that inflammatory reactive oxygen species (ROS) and age-related oxidative stress can affect chondrocyte activity and cartilage homeostasis. We investigated changes in the levels of intracellular antioxidants during cellular senescence of primary chondrocytes from rat articular cartilages. Cellular senescence was induced by serial subculture (passages 0, 2, 4, and 8) of chondrocytes and measured using specific senescence-associated ${\beta}$-galactosidase ($SA-{\beta}-gal$) staining. ROS production increased significantly in the senescent chondrocytes. In addition, total glutathione (GSSG/GSH) and superoxide dismutase (SOD) levels and heme oxygenase-1 (HO-1) expression increased in senescent chondrocytes induced by serial subculture. Analysis of changes in intracellular antioxidant levels in articular cartilage from rats of different ages (5, 25, 40, and 72 wk) revealed that total glutathione levels were highest after 40 wk and slightly decreased after 72 wk as compared with those after 25 wk. SOD and HO-1 expression levels increased in accordance with age. Based on these results, we conclude that intracellular antioxidants may be associated with cartilage protection against excessive oxidative stress in the process of chondrocyte senescence and age-related cartilage degeneration in an animal model.

Comparative Analysis on Anti-aging, Anti-adipogenesis, and Anti-tumor Effects of Green Tea Polyphenol Epigallocatechin-3-gallate (녹차의 폴리페놀류인 에피갈로카테킨-3-갈레이트에 의한 항노화, 항비만 및 항암효과에 대한 비교 분석)

  • Lim, Eun-Ji;Kim, Min-Jae;Kim, Hyeon-Ji;Lee, Sung-Ho;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1201-1211
    • /
    • 2018
  • The study compared the anti-aging, anti-adipogenesis, and anti-tumor effects of epigallocatechin-3- gallate (EGCG) in various cancer cell lines (SNU-601, MKN74, AGS, MCF-7, U87-MG, and A-549) and normal cell lines (MRC-5 fibroblasts, dental tissue-derived mesenchymal stem cells [DSC], and 3T3-L1 pro-adipocytes). Half inhibitory concentration ($IC_{50}$) values were significantly (p<0.05) higher in normal cell lines (~50 uM), when compared to that in cancer cell lines (~10 uM). For anti-aging effects, MRC-5 and DSC were exposed to 10 uM EGCG for up to five passages that did not display any growth arrest. Population doubling time and senescence-related ${\beta}-galactosidase$ ($SA-{\beta}-gal$) activity in treated cells were similar to untreated cells. For anti-adipogenic effects, mouse 3T3-L1 pre-adipocytes were induced to adipocytes in an adipogenic differentiation medium containing 10 uM EGCG, but adipogenesis in 3T3-L1 cells was not inhibited by EGCG treatment. For anti-tumor effects, the cancer cell lines were treated with 10 uM EGCG. PDT was significantly (p<0.05) increased in EGCG-treated SNU-601, AGS, MCF-7, and U87-MG cancer cell lines, except in MKN74 and A-549. The level of telomerase activity and cell migration capacity were significantly (p<0.05) reduced, while $SA-{\beta}-gal$ activity was highly up-regulated in EGCG treated-cancer cell lines, when compared to that in untreated cancer cell lines. Our results have demonstrated that EGCG treatment induces anti-tumor effects more efficiently as noted by decreased cell proliferation, cell migration, telomerase activity, and increased $SA-{\beta}-gal$ activity than inducing anti-aging and anti-adipogenesis. Therefore, EGCG at a specific concentration can be considered for a potential anti-tumor drug.

Cellular senescence in cancer

  • Kim, Young Hwa;Park, Tae Jun
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.42-46
    • /
    • 2019
  • Cellular senescence, a process of cell proliferation arrest in response to various stressors, has been considered to be important factor in age-related disease. Identification of senescent cells in tissues is limited and the role of senescent cells is poorly understood. Recently however, several studies showed the characterization of senescent cells in various pathologic conditions and the role of senescent cells in disease progression is becoming important. Senescent cells are growth-arrested cells, however, the senescence associated secretory phenotype (SASP) of senescent cells could modify the tissues' microenvironment. Here, we discuss the progress and understanding of the role of senescent cells in tissues of pathologic conditions and discuss the development of new therapeutic paradigms, such as senescent cells-targeted therapy.

Evaluation of Senescence Induced Prematurely by Stress. Application for cosmetic active ingredients

  • Morvan, Pierre-Yves;Romuald Vallee
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.285-290
    • /
    • 2003
  • Living cells are continuously subject to all sorts of stress such as ultraviolet rays on skin cells. Tests made in various laboratories show that when young fibroblasts (Le. at the beginning of their proliferate life) were repeatedly put under stress at subletal doses, they acquired a phenotype similar to Senescence Induced Prematurely by Stress (SIPS). The work presented hereafter was made on a new model of senescence induced prematurely by stress from ultraviolet Brays (UVB). The human fibroblast model was put under repeated UVB stress, causing SIPS. Several ageing biomarkers were used in order to characterise the cells that underwent stress:. an increase in the proportion of positive cells with senescence associated $\beta$-galactosidase activity (SA $\beta$-gal) measured by a specific coloration,. the proportion in the different morphological stages that fibroblasts undergo during culture visualised by microscopic observation,. the expression of genes known for overexpressing during senescence, particularly fibronectin and apolipoprotein J, measured by Real Time-PCR,. the common deletion of 4,977 bp in mitochondrial DNA, evaluated by nested PCR. Studying the variation of these 4 biomarkers, we have evaluated the protective effect of a Laminaria digitata extract (LDE) that can be used as a natural active ingredient for anti-ageing cosmetics.

  • PDF

The Effect of Brunfelsia grandiflora Ethanol Extract on the Induction of Autophagy in Human Lung Fibroblasts (사람 폐 섬유아 세포에서 Brunfelsia grandiflora 에탄올 추출물이 Autophagy에 미치는 영향)

  • Nam, Hyang;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.837-842
    • /
    • 2014
  • The purpose of this study was to investigate the effect of Brunfelsia grandiflora ethanol extract (BGEE) on the induction of autophagy via regulation of SIRT1 expression and p53 activation in a human lung fibroblast cell line, IMR 90. BGEE at a concentration of $5{\mu}g/ml$ or more exhibited a cytotoxic effect on IMR 90 cells. For the first time, this study showed that BGEE induces autophagy in normal human lung fibroblasts. BGEE also increased the expression level of beclin-1 at $2.5{\mu}g/ml$ or less and Atg7 at $5{\mu}g/ml$, both of which are known to be involved in the induction of autophagy. In addition, BGEE modulated the expression of other proteins related to autophagy in normal human lung fibroblasts. The expression levels of p53 and p-p53, an active form of p53, were decreased in the presence of BGEE at a noncytotoxic concentration. In contrast, the expression level of SIRT1 was increased in human lung fibroblasts treated with BGEE at a noncytotoxic concentration. Moreover, SA-${\beta}$-Gal staining, an aging marker, was reduced in the normal human lung fibroblasts treated with BGEE. These findings suggest that BGEE promotes the induction of autophagy and antiaging through the modulation of p53 and SIRT1 in human lung fibroblasts.

Anti-aging effects from extracts of Aurelia aurita (보름달물해파리 추출물의 항노화 효과)

  • Seo, Hyo-Hyun;Cho, Moon-Jin;Lee, Jin-Hyeong;Lee, Jeong-Hun;Kim, So-Jung;Lee, Gun-Sup;Lee, Taek-Kyun;Moh, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2012.05a
    • /
    • pp.274-277
    • /
    • 2012
  • 지구온난화의 폐해 중 하나인 해파리의 대량증식은 환경 생태계에 좋지 않은 영향을 미치고 있고, 또한 과도한 개체수는 원할한 처리가 곤란해 많은 문제점을 초래하고 있는 실정이다. 이러한 해파리의 생산적이고 효율적인 개선방안으로 단순 가공식품 뿐만 아니라 해파리의 추출을 통해 산업적으로 활용가능한 기능성 화장품원료로의 응용가능성도 고려해 볼 수 있을 것이다. 따라서 본 연구는 보름달물 해파리 유래 추출물의 기능성 화장품 원료로서의 안전성 및 유효성을 규명하였다. 인간피부섬유아세포에서의 세포독성, 주름 개선 효과와 관련된 procollagen 발현양의 증가 및 노화로 증가되는 SA-${\beta}$-Gal 효소의 활성을 염색을 통하여 확인하였고, 항노화 화장품 신소재로서의 사업화 가능성을 확인 할 수 있었다.

  • PDF

Screening of Plants with Inhibitory Activity on Cellular Senescence

  • Lee, Seung-Eun;Kim, Jae-Ryong;Noh, Hyung-Jun;Kim, Geum-Sook;Lee, Jeong-Hoon;Choi, Jehun;Lee, Dae-Young;Kim, Seung-Yu
    • Korean Journal of Plant Resources
    • /
    • v.27 no.6
    • /
    • pp.601-609
    • /
    • 2014
  • In this study, the effect of plant extract on the senescence action and cell survival rate in two types of cells, in which aging was derived by adriamycin, was analyzed to find the materials for suppressing cell senescence from natural resources. The results are as follows. For human umbilical vein endothelial cells (HUVECs), the fruit of Physalis angulata L. and the aerial part of Synurus deltoides (Aiton) Nakai showed excellent cell-senescence inhibition activities in a treatment concentration-dependent manner, demonstrating the high possibility for utilization as a material for prevention and treatment for vascular diseases. The water extract from the root of Polygonatum odoratum var. pluriflorum for variegatum Y. N. Lee showed potent cell-senescence inhibitory effect for human dermal fibroblasts (HDFs). Thus it is considered that the additional study on the plant needs for elucidating the possible utilization as material for skin health improvement.