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Cellular senescence, a process of cell proliferation arrest in 
response to various stressors, has been considered to be 
important factor in age-related disease. Identification of 
senescent cells in tissues is limited and the role of senescent 
cells is poorly understood. Recently however, several studies 
showed the characterization of senescent cells in various 
pathologic conditions and the role of senescent cells in disease 
progression is becoming important. Senescent cells are 
growth-arrested cells, however, the senescence associated 
secretory phenotype (SASP) of senescent cells could modify 
the tissues’ microenvironment. Here, we discuss the progress 
and understanding of the role of senescent cells in tissues of 
pathologic conditions and discuss the development of new 
therapeutic paradigms, such as senescent cells-targeted 
therapy. [BMB Reports 2019; 52(1): 42-46]

INTRODUCTION

When cells continue to divide by repeated subculture, 
progressive telomere erosion occurs, the cells are no longer 
able to divide, and the proliferation is permanently stopped (1, 
2). This phenomenon is called cellular senescence and can be 
observed not only in vitro, but also in vivo (1-4). Since cellular 
senescence was first described, studies to identify and clarify 
the roles of senescent cells have been undertaken (5-7). The 
fact that normal cells can become senescent cells by 
replication contrasts with the infinite proliferative ability of 
cancer cells (8). Therefore, normal cells that have been 
induced into senescence become important in physiological 
and pathological processes, and the role of senescent cells has 
become increasingly emphasized (8). Generally, senescent 
cells are observed as human beings age (1, 2). However, 
senescent cells are also observed in normal organ 
development and pathological conditions related to aging. For 
example, these cells have been observed not only in normal 

finger digit development, but also in examples of aging 
pathology, such as cataracts, osteoarthritis and atherosclerosis 
(9-13). Thus, most of the research on senescent cells has been 
conducted in primary isolated normal cells, and in vitro 
studies have induced cellular senescence mainly through DNA 
stimulation or subculture of fibroblasts (1, 6, 8). Recently, 
cellular senescence has been observed in tumor tissues (7, 14), 
however, the role of these cells in lesions is still poorly 
understood. 

The role of senescent cells has been studied in recent years. 
The purpose of senescence is thought to be the elimination of 
unwanted cells, such as damaged cells (1, 6, 7). In general, 
transient induction of senescence in damaged tissues is 
considered to be a process beneficial to tissue regeneration 
(15, 16). However, the persistence of senescent cells or failure 
of their elimination, affects tissues by alteration of their 
microenvironment (14, 17, 18). This is related with cancer and 
senescence, which is characterized by accumulation of 
damaged and stimulated cells. Therefore, senescence is 
believed to be a crucial barrier against cancer progression 
(19-21). And recent studies reported that senescent cells may 
be involved in cancer progression (22-24). These senescent 
cells are thought to originate from tumor cells, and are called 
senescent tumor cells (25-28). In this review, we focus 
specifically on the identification and pathological role of 
senescent cells in the tumors.

IDENTIFICATION OF SENESCENT CELLS IN VIVO

Identification of senescent cells in vivo has technical 
limitations. In vitro, morphologic characteristics of cellular 
senescence are easily observed. Cells appear enlarged, 
flattened, and granulated, and cell growth rate decreases (1, 5, 
6, 29). However, in vivo, senescent cells appear normal and 
lack such morphological changes (25-28). Therefore, 
senescence cellular markers have emerged as a tool for in vivo 
identification of senescent cells (30, 31). Senescence 
associated -galactosidase (SA--Gal) staining and p16INK4A 
immunostaining have been considered as effective markers of 
cellular senescence (25-28). The SA--Gal staining method is 
relatively easy and provides reliable data for in vitro 
identification, as well (31). SA--Gal staining in vivo, however 
requires fresh frozen tissue preparation, necessitating 
cooperation between surgeons and pathologists (25-28). In 
addition, one of the things to note in SA--Gal staining in vivo 
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is that it can be stained in normal tissues. Not only the 
senescent cells, but also some cells in specific areas of normal 
tissues can be stained by SA--Gal (30). For example, 
senescent fibroblasts in aged skin show SA--Gal positivity, but 
staining is also strongly observed in normal hair follicles (31, 
32). SA--Gal also stains the mucus in normal colon 
epithelium (33). Nevertheless, SA--Gal staining is widely used 
to identify senescent cells in vivo, but, because of above strict 
tissue preparation requirements, the combination of SA--Gal 
with other molecular markers of senescence in the same cells 
provides more reliable data (30, 31). Other surrogate markers 
of senescence are the DNA damage signal related proteins or 
secreted proteins, such as H2AX, senescence-associated 
heterochromatin foci (SAHF), p21WAF1, p16INK4A, macroH2A, 
interleuikin-6 (IL-6), and IL-8 (6-8, 34, 35). However, 
measuring senescent cells using only these markers may result 
in erroneous conclusions because p21WAF1 can be fully 
expressed, not only senescent cells, but also in acutely DNA 
damaged cells (36, 37). UV exposed skin tissues show marked 
upregulation of p21WAF1 expression in keratinocytes, without 
cellular senescence (38). In the case of p16INK4A, a powerful 
and reliable senescence marker, it is strongly expressed not 
only when senescence is induced, but also as a result of 
p16INK4A mutation or HPV suppression (39, 40). Furthermore, 
IL-6 and IL-8 can also be induced by various immune 
responses (41, 42). Thus, rather than measuring senescence 
with a single marker, using a variety of methods, such as 
staining with both SA--Gal and p16INK4A can be a more useful 
way to identify senescent cells in vivo (25-28).

SENESCENCE ASSOCIATED SECRETORY PHENOTYPE 
(SASP) IN SENESCENT CELLS

An important feature of senescent cells is that their growth is 
arrested, but they remain metabolically active (1). Although 
cell proliferation is inhibited, the cells actively produce many 
kinds of proteins. Senescent cells are characterized by 
secretion of many proteins (43, 44). They express IL-6 and 
IL-8, which are inflammatory cytokines, as well as chemokines 
that attract inflammatory cells (41, 42, 44). Expression of 
matrix metalloproteinases (MMPs) that alter the extracellular 
matrix is high in senescent cells (28, 45, 46). Secretion of 
these different proteins can affect the surrounding neighboring 
cells or cause changes to the tissue microenvironment (14, 17, 
18). This phenomenon is called senescence associated 
secretory phenotype (SASP) (18, 43). The expression pattern of 
the SASP is known to be different, depending on the origin of 
the cells. The SASP expression pattern is different between 
epithelial and mesenchymal cells, so SASP’s influence on each 
tissue’s microenvironment is thought to be different (18, 43). 
The differential expression of SASP suggests that senescent 
cells are actively involved in the pathogenesis of various 
diseases and disease progression. For example, inflammation 
has been observed to progress in aged tissues, without 

evidence of pathogenic infection, suggesting that senescent 
cells are involved in the inflammatory response through SASP 
expression (18, 47). The expression pattern of SASP is different 
according to the stimuli of induction, as well. For example, the 
SASP expression pattern is different between replicative 
senescence (RS), stress induced senescence (SIS), and oncogene 
induced senescence (OIS) (6). It has also been reported that 
the expression of SASP varies widely, depending on the origin 
of the cells (18, 43). Therefore, when senescent cells are 
observed in tissues, the pattern of expression of SASP varies 
depending on the stimuli and origin of senescent cells, and the 
microenvironmental effects of senescent cells in these tissues 
may be different (18, 43, 47).

Cellular senescence the characteristics of a double edged 
sword; SASP can have a positive or negative effect on disease 
progression (18, 43, 47). Positive factors include local wound 
healing, tissue regeneration from damaged cells, and immune 
reaction inhibition in damaged cells, processes that aid the 
healing process (48). SASP can also enhance the expression of 
MMPs in pathologic conditions, such as hepatic or skin 
fibrosis, preventing fibrosis during the healing process of liver 
damage or skin wound injuries (49). The SASP cytokines, IL-6 
and IL-8, also reinforce senescence growth arrest in some 
senescent cells (34, 35). Negative effects include an increased 
inflammatory response, stimulating the growth of nearby 
malignant cells, and inducing metastasis of malignant cancer 
cells (23, 24, 28). It has also been observed that the SASP can 
cause an epithelial mesenchymal transition (EMT) phenomenon 
that promotes cancer (46, 50). Therefore, depending on the 
tissue structure and tissue microenvironment, SASP may be 
beneficial to the disease progression or may have a negative 
impact. It is also believed to affect disease progression, 
depending on the type of SASP expression. Whether the role 
of SASP in cancer development or cancer progression is 
positive or negative remains controversial. 

SENESCENT CELLS IN TUMOR TISSUES

The history of senescent cell observation in tumor tissues has 
not been long. It was thought that senescent tumor cells would 
not be found in malignant tumors because of the decreased 
ability of senescent cells to divide (7). Recently, however, with 
the discovery of various markers of cellular senescence and 
the rapid processing of fresh tumor tissues, large numbers of 
senescent cells were reported in a tumor mass (25-28). Then, 
the question arises regarding the origin of senescent cells in 
tumors. To investigate this, characterization of senescent cells 
using various senescence, epithelial and mesenchymal cells 
markers was performed (28). Senescent cells in the tumors 
tissues were mainly observed with p16INK4A immunostaining 
and SA--Gal staining in p16INK4A non-deleted and non-mutated 
tumors (28, 39, 40). SA--Gal and p16INK4A staining were 
observed in the tumor mainly, and were considered to be 
senescent tumor cells. However, vimentin, a fibroblast marker, 
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Fig. 1. Schematic representation of the role of senescent cells in 
tumors. Senescent cells express SASP and are involved in 
interactions with the tissue microenvironment, including extracel-
lular matrix (ECM) degradation, immune cells infiltration, and 
cancer invasion.

did not stain the cells, indicating that the tumor cells had 
undergone senescence (7, 8, 28). 

Senescent tumor cells have been thought to have the ability 
to inhibit tumorigenesis, since their proliferative capacity is 
suppressed (19-21). Senescence is induced by activation of 
various oncogenes, resulting in the expression of p16INK4A and 
induction of oncogene-induced senescence, and is observed in 
normal primary cells, including fibroblasts, melanocytes, and 
thyrocytes. Therefore, senescence has been considered a 
mechanism to inhibit cancer development (21, 49, 51). In 
addition, the disappearance of tumor suppressor genes, such 
as p16INK4A, p53, and p21Waf1 has been shown to induce 
cancer development in vitro (7, 19, 20). For these reasons, the 
presence of senescent tumor cells is thought to have a cancer 
suppressing effect (19-21). The discovery of senescent cells in 
vivo after oncogene activation has been reported in mouse 
experiments. In the K-RasG12V mutant transgenic mouse, a large 
number of senescent cells with SA--Gal staining positivity 
were observed in the lung adenoma, and no senescent cells 
were found in carcinoma stage (52). In addition, melanoma 
formation was not observed when the B-RafV600E oncogene was 
overexpressed in primary isolated melanocytes, and a 
B-RafV600E mutation was observed in skin benign tumor nevus, 
indicating that senescent cells remained in the precancerous 
region (53). Furthermore, the K-Ras mutant is able to augment 
growth of breast cells in mouse, but it does not lead to the 
formation of carcinoma (54). These results present evidence 
that senescence limits the progression of tumor development. 
However, recent evidence indicates that cellular senescence 
or senescent tumor cells can promote carcinogenesis by 
producing various growth factors, cytokines, and proteases, 
collectively referred to as senescent-associated secretory 
phenotypes (23, 24, 28, 43). Although senescent cells are 
rarely observed in cancers tissues, the existence of senescent 
tumor cells in cancers has been reported (25-28). Senescent 
tumor cells are observed in various carcinomas such as 
thyroid, breast, stomach and colorectal cancer (25, 51, 55, 
56). Interestingly, in some carcinomas, the distribution of 
senescent tumor cells is not even, and it is observed in a 
specific tumor tissue locations. Senescent tumor cells do not 
exist in the center of the mass where hypoxic damage usually 
occurs, but rather in the marginal region of the tumor (28). 
Furthermore, they are present in large numbers in the 
metastatic lymph nodes and lymphatic vessels (28). These data 
demonstrate that senescent tumor cells are actively involved in 
cancer progression and SASP expression is thought to be 
involved in that process (28). Senescent tumor cells express 
SASP and their SASP expression patterns are different than 
those of senescent cells induced from normal cells, such as 
fibroblasts (6, 43). The expression pattern of SASP is similar in 
some proteins, but others differ between senescent tumor cells 
and senescent fibroblasts. For example, IL-6 and IL-8, common 
inflammatory cytokines, are increased in both cases, but the 
expression of chemokines and protease are different (28, 32, 

43). The expression of matrix metalloproteinase (MMP) is 
markedly increased, and a large amount of protein capable of 
degrading extracellular matrix is secreted in senescent tumor 
cells (28, 43). It has also been noted that highly-expressed 
chemokine ligands (CCL) and C-X-C motif ligand (CXCL), can 
induce inflammation and chemoattract other cells, immune 
cells and non-senescent tumor cells (28, 57). Among the 
chemokines, CXCL12 is a chemokine that can lead to 
non-senescent tumor cells (28, 58). CXCL12 was not expressed 
in senescent fibroblasts due to hypermethylation of its 
promoter, however it was largely expressed in senescent 
tumor cells (28, 32). Furthermore, usually non-senescent 
tumor cells express a large amount of C-X-C chemokine 
receptor 4 (CXCR4). Senescent tumor cells secrete CXCL12 
that was observed to be related to cancer cell migration and 
metastasis by interaction with non-senescent tumor cells (28). 
In addition, senescent tumor cells prevent anoikic cell death in 
lymphatic vessels, helping tumor cells survive and metastasize 
to target organs (28). This result suggests that senescent tumor 
cells are actively involved in cancer progression (28). Thus, 
senescent tumor cells are thought to play a role in suppressing 
cancer progression, and also have a role in promoting cancer 
progression (Fig. 1). Therefore, the study of senescent tumor 
cells in various organs should be continued.

As mentioned above, senescent tumor cells can be observed 
in primary cancer tissues (25-28), but they are also observed 
following anti-cancer treatment with chemotherapy or 
irradiation (18). Induction of senescent cells from cancer cells 
has been thought to be a reliable therapeutic strategy in tumor 
therapy (14). Cancer cell death is observed in lethal dose after 
administration of chemotherapy or radiation, but in cases 
where sub-lethal doses were given, senescent cells were found 
(14). Furthermore, the use of retinoic acid for the treatment of 
acute promyelocytic leukemia, and the resulting induction of 
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senescent cells in the tumor by the cell dependent kinase 4 
(CDK4) and CDK6 inhibitor palbociclib, can improve the 
patient's prognosis. This is called therapy induced senescence 
(14). However, as mentioned above, long term treatment 
seems to have a side effect with SASP expression. Therefore, 
the combination of senescence-inducing therapy with 
interventions that clear senescent cells could be beneficial to 
short- and long-term outcomes in cancer patients (18).

Little is known yet about the induction action mechanism of 
senescent tumor cells. Obviously, morphologically, they are 
malignant tumor cells that progress beyond the pre-cancerous 
stage. However, why senescent tumor cells are induced has 
not yet been elucidated. If reactive oxygen species (ROS) or 
hypoxic stress induces senescence (59), a large amount of 
senescent tumor cells should be observed in the central region 
of the tumor. The possibility of senescence induction by ROS 
seems low, however because senescence is observed in the 
peripheral region of tumors (28). Furthermore, we do not think 
it is a precancerous stage. As mentioned earlier, it is 
morphologically malignant tumor cells and involve cancer 
cells migration and metastasis which is characteristic of 
malignant tumor. Therefore, more studies should be performed 
in this field.
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