• Title/Summary/Keyword: S.pombe

Search Result 102, Processing Time 0.025 seconds

Expression of Schizosaccharomyces pombe Thioltransferase and Thioredoxin Genes under Limited Growth Conditions

  • Cho, Young-Wook;Sa, Jae-Hoon;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.395-401
    • /
    • 2001
  • Schizosaccharomyces pombe gene encoding redox enzymes, such as thioltransferase (TTase) and thioredoxin (TRX), were previously cloned and induced by oxidative stress. In this investigation, their expressions were examined using $\beta$-galactosidase fusion plasmids. The expression of the two cloned genes appeared to be growth-dependent. The synthesis of $\beta$-galactosidase from the TTase-lacZ fusion was increased in the medium with the low glucose level, whereas it was significantly decreased in the medium without glucose or with galactose. It was also decreased in the nitrogen-limited medium. The synthesis of galactosidase from the TRX-lacZ fusion was unaffected by galactose or low glucose. However, it was lowered the absence of glucose. The synthesis of $\beta$-galactosidase from the TTase-lacZ fusion was shown to be enhanced in a higher medium pH. Our findings indicate that S. pombe TTase and TRX genes may be regulated by carbon and nitrogen sources, as well as medium pH.

  • PDF

Screening Molecular Chaperones Similar to Small Heat Shock Proteins in Schizosaccharomyces pombe

  • Han, Jiyoung;Kim, Kanghwa;Lee, Songmi
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.272-279
    • /
    • 2015
  • To screen molecular chaperones similar to small heat shock proteins (sHsps), but without ${\alpha}$-crystalline domain, heat-stable proteins from Schizosaccharomyces pombe were analyzed by 2-dimensional electrophoresis and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Sixteen proteins were identified, and four recombinant proteins, including cofilin, NTF2, pyridoxin biosynthesis protein (Snz1) and Wos2 that has an ${\alpha}$-crystalline domain, were purified. Among these proteins, only Snz1 showed the anti-aggregation activity against thermal denaturation of citrate synthase. However, pre-heating of NTF2 and Wos2 at $70^{\circ}C$ for 30 min, efficiently prevented thermal aggregation of citrate synthase. These results indicate that Snz1 and NTF2 possess molecular chaperone activity similar to sHsps, even though there is no ${\alpha}$-crystalline domain in their sequences.

The Gene Encoding γ-Glutamyl Transpeptidase II in the Fission Yeast Is Regulated by Oxidative and Metabolic Stress

  • Kang, Hyun-Jung;Kim, Byung-Chul;Park, Eun-Hee;Ahn, Ki-Sup;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.609-618
    • /
    • 2005
  • $\gamma$-Glutamyl transpeptidase (GGT, EC 2.3.2.2.) catalyzes the transfer of the $\gamma$-glutamyl moiety from $\gamma$-glutamyl containing ompounds, notably glutathione (GSH), to acceptor amino acids and peptides. A second gene (GGTII) encoding GGT was previously isolated and characterized from the fission yeast Schizosaccharomyces pombe. In the present work, the GGTII-lacZ fusion gene was constructed and used to study the transcriptional regulation of the S. pombe GGTII gene. The synthesis of $\beta$-galactosidase from the GGTII-lacZ fusion gene was significantly enhanced by NO-generating SNP and hydrogen peroxide in the wild type yeast cells. The GGTII mRNA level was increased in the wild-type S. pombe cells treated with SNP. However, the induction by SNP was abolished in the Pap1-negative S. pombe cells, implying that the induction by SNP of GGTII is mediated by Pap1. Fermentable carbon sources, such as glucose (at low concentrations), lactose and sucrose, as a sole carbon source, enhanced the synthesis of $\beta$-galactosidase from the GGTII-lacZ fusion gene in wild type KP1 cells but not in Pap1-negative cells. Glycerol, a non-fermentable carbon source, was also able to induce the synthesis of $\beta$-galactosidase from the fusion gene, but other non-fermentable carbon sources such as acetate and ethanol were not. Transcriptional induction of the GGTII gene by fermentable carbon sources was also confirmed by increased GGTII mRNA levels in the yeast cells grown with them. Nitrogen starvation was also able to induce the synthesis of $\beta$-galactosidase from the GGTII-lacZ fusion gene in a Pap1-dependent manner. On the basis of the results, it is concluded that the S. pombe GGTII gene is regulated by oxidative and metabolic stress.

Effect of Tex1/THOC3, a component of THO complex, on growth and mRNA export in fission yeast (분열효모에서 THO 복합체의 구성요소인 Tex1/THOC3가 생장 및 mRNA 방출에 미치는 영향)

  • Bae, Soo Jeong;Koh, Eun-Jin;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.292-296
    • /
    • 2017
  • In eukaryote, THO/TREX complex plays a critical role in transcriptional elongation, pre-mRNA processing, and nuclear mRNA export. This complex is evolutionally well- conserved, but there are some differences in composition and function according to organisms. Here we showed that spTex1, a component of THO/TREX complex, is not essential for growth and mRNA export in a fission yeast, Schizosaccharomyces pombe, which is more similar to higher eukaryote than budding yeast. Deletion and overexpression of the spTex1 gene do not lead to any detectable growth phenotype and accumulation of poly(A)+ RNA in the nucleus. And the spTex1-GFP protein is localized mainly in the nucleus. Yeast two-hybrid and Co-immunoprecipitation analysis showed that the spTex1 protein interacted with spHpr1 (THOC1) and spTho2 (THOC2), main subunits of THO complex. We conclude that the S. pombe Tex1 is a component of THO/TREX complex, but does not plays important roles in growth and bulk mRNA export from the nucleus.

Optimal Condition for Deacidification Fermentation of Wild Grape Wine by Mixed Culture (혼합배양에 의한 산머루주의 감산발효 최적조건)

  • Kim, Seong-Ho
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • In order to prevent wine quality deterioration caused by strong sour taste from raw and other materials during fermentation of wild grape wine, the various mixed cultures conditions of the deacidification fermentation and the alcohol fermentation process by inoculation of mixed strains were investigated. As a result of mixed cultures process after the inoculation of Schizosaccharomyces pombe and Schizosaccharomyces japonicus with each deacidification fermentation strain in a culture of Saccharomyces sp. SMR-3 which was used in the alcohol fermentation strain of wild grape, cultures for 12 days at $22^{\circ}C$ with Saccharomyces sp. SMR-3 and Schizosaccharomyces pombe resulted in the maximum alcohol content at $15.8{\pm}0.2%$ and the minimum with the acidity of $0.44{\pm}0.02%$, the total organic acid of $648.96{\pm}7.14$ mg% and malic acid of $99.30{\pm}1.24$ mg%. Mixed cultures with Saccharomyces sp. SMR-3 and Schizosaccharomyces pombe under the optimal condition for the deacidification fermentation of wild grape wine showed 2% higher alcohol content, 51.65% lower acidity, 48.02% lower total organic acid, and 81.12% lower malic acid than a single culture of Saccharomyces sp. SMR-3.

Rkp1/CPC2, a RACK1 Homolog, Interacts with Pck1 to Regulate PKC-Mediated Signaling in Schizosaccharomyces pombe

  • Won, Mi-Sun;Jang, Young-Joo;Hoe, Kwang-Lae;Park, Jo-Young;Chung, Kyung-Sook;Kim, Dong-Uk;Sun, Nam-Kyu;Kim, Sung-Ai;Song, Kyung-Bin;Yoo, Hyang-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.592-597
    • /
    • 2002
  • The Rkp1/CPC2, a receptor for activated protein kinase C of Schizosaccharomyces pombe, contains seven WD motifs found in the G-protein $\beta$-subunit. A 110-kDa protein was identified to interact with Rkp1/CPC2 by immunoprecipitation and following in vitro binding assay. To examine its kinase activity and binding ability to Rkp1, the $pck1^+$, a PKC homolog of S. pombe, was cloned. Pckl phosphorylated myelin basic protein (MBP) and histone Hl in a phospholipid-dependent and $Ca^{2+}$-independent manner. It was demonstrated that the N-terminal region of Pck1 was responsible for the binding to Rkp1 , thus suggesting that Rkp1 interacted with Pckl to regulate Pckl-mediated signaling in S. pombe.

Characterization of UV-Inducible Gene(UVI-155) in Schizosaccharomyces pombe (효모 Schizosaccharomyces pombe에서 자외선 유도유전자 UVI-155의 분리 및 특성 연구)

  • Jin, Ji-Young;Choi, In-Soon
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.126-130
    • /
    • 2006
  • The present study intends to characterize the DNA damage-inducible responses in yeast. The fission yeast, Schizosaccharomyces pombe was used in this study as a model system for higher eukaryotes. To study UV-inducible responses in S. pombe, five UV-inducible cDNA clones were isolated from S. pombe by using subtration hybridization method. To investigate the expression of isolated genes, UVI-155, the cellular levels of the transcripts were determined by Northern blot analysis after UV-irradiation. The transcripts of isolated gene (UVI-155) increased rapidly and reached maximum accumulation after UV-irradiation. Compared to the message levels of control, the levels of maximal increase were approximately 5 fold to UV-irradiation. In order to investigation whether the increase of UVI-l55 trascripts was a specific results of UV-irradiation, UVI-155 transcript levels were examined after treating the cells to mthylmethane sulfonate (MMS). The transcripts of UVI-155 were not induced by treatment of $0.25\%$ MMS. These results implied that the effects of damaging agents are complex and different regulatory pathways exist for the induction of these genes. To characterize the UVI-155 gene, gene deletion experiments were analyzed. The deleted strain was not well grown. This result indicated that the UVI-155 gene is essential for cell viability.

Regulation of the Gene Encoding Glutathione Synthetase from the Fission Yeast

  • Kim, Su-Jung;Shin, Youn-Hee;Kim, Kyung-Hoon;Park, Eun-Hee;Sa, Jae-Hoon;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.326-331
    • /
    • 2003
  • The fission yeast cells that contained the cloned glutathione synthetase (GS) gene showed 1.4-fold higher glutathione (GSB) content and 1.9-fold higher GS activity than the cells without the cloned GS gene. Interestingly, $\gamma$-glutamylcysteine synthetase activity increased 2.1-fold in the S. pombe cells that contained the cloned GS gene. The S. pombe cells that harbored the multi copy-number plasmid pRGS49 (containing the cloned GS gene) showed a higher level of survival on solid media with cadmium chloride (1 mM) or mercuric chloride ($10\;{\mu}M$) than the cells that harbored the YEp357R vector. The 506 bp upstream sequence from the translational initiation point and N-terminal8 amino acid-coding region were fused into the promoteriess $\beta$-galactosidase gene of the shuttle vector YEp367R to generate the fusion plasmid pUGS39. Synthesis of $\beta$-galactosidase from the fusion plasmid pUGS39 was significantly enhanced by cadmium chloride and NO-generating S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SN). It was also induced by L-buthionine-(S,R)-sulfoximine, a specific inhibitor of $\gamma$-glutamylcysteine synthetase (GCS). We also found that the expression of the S. pombe GS gene is regulated by the Atf1-Spc1-Wis1 signal pathway.

Transcriptional Analysis and Pap1-Dependence of the Unique Gene Encoding Thioredoxin Reductase from the Fission Yeast

  • Kang Hyun-Jung;Hong Sung-Min;Kim Byung-Chul;Kim Kyunghoon;Park Eun-Hee;Lim Chang-Jin
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • The unique gene encoding thioredoxin reductase (TrxR) was previously cloned and characterized from the fission yeast Schizosaccharomyces pombe, and its expression was induced by oxidative stress. To elucidate tbe regulatory mechanism of the S. pombe TrxR gene, three fusion plasmids were generated using polymerase chain reaction: pYUTR20, pYUTR30, and pYUTR40. Plasmid pYUTR20 has an upstream region of 891 base pairs, pYUTR30 has 499 in this region, and pYUTR40 has an 186 bp upstream region. Negatively acting sequence is located between $-1,526\;\~\;-891bp$ upstream of the gene. The upstream sequence, responsible for the induction of TrxR by menadione (MD), is situated on the $-499\;\~\;-186bp$ region, which is also required for TrxR induction by mercuric chloride. The same region also appeared to be required for Pap1-mediated transcriptional regulation of the TrxR gene, which contains the two plausible Papl binding sites, TTACGAAT and TTACGCGA. Consistently, basal and inducible expression of the TrxR gene was markedly lower in the Pap1-negative TP108-3C cells than in wild-type yeast cells. In summary, up-regulation of the S. pombe TrxR gene is mediated by Pap1 via the transcriptional motif(s) located on the $-499\;\~\;-186bp$ region.

Effects of the Repression of sphpr1 Expression on Growth and mRNA Export in Fission Yeast (분열효모에서 sphpr1 유전자의 결실이 생장 및 mRNA Export에 미치는 영향)

  • Lee, Hyun-Joo;Yoon, Jin-Ho
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.171-174
    • /
    • 2012
  • THOC1/Hpr1 is one subunit of THO complex that is an evolutionally conserved assembly involved in the mRNP packaging and mRNA export during transcription elongation. In fission yeast Schizosaccharomyces pombe, an ortholog (spHpr1) of THOC1/Hpr1 was identified based on sequence alignment. A deletion mutant in a diploid strain was constructed by replacing one of spHpr1-coding region with a $kan^r$ gene using one-step gene disruption method. Tetrad analysis showed that the sphpr1 is essential for growth. Over-expression of sphpr1 from strong nmt1 promoter caused no defects of growth and mRNA export. However, repression of the sphpr1 expression resulted in growth inhibition accompanied by accumulation of poly$(A)^+$ RNA in the nucleus. These results suggest that spHpr1 is involved in mRNA export from the nucleus to cytoplasm.