DOI QR코드

DOI QR Code

Characterization of UV-Inducible Gene(UVI-155) in Schizosaccharomyces pombe

효모 Schizosaccharomyces pombe에서 자외선 유도유전자 UVI-155의 분리 및 특성 연구

  • Published : 2006.02.01

Abstract

The present study intends to characterize the DNA damage-inducible responses in yeast. The fission yeast, Schizosaccharomyces pombe was used in this study as a model system for higher eukaryotes. To study UV-inducible responses in S. pombe, five UV-inducible cDNA clones were isolated from S. pombe by using subtration hybridization method. To investigate the expression of isolated genes, UVI-155, the cellular levels of the transcripts were determined by Northern blot analysis after UV-irradiation. The transcripts of isolated gene (UVI-155) increased rapidly and reached maximum accumulation after UV-irradiation. Compared to the message levels of control, the levels of maximal increase were approximately 5 fold to UV-irradiation. In order to investigation whether the increase of UVI-l55 trascripts was a specific results of UV-irradiation, UVI-155 transcript levels were examined after treating the cells to mthylmethane sulfonate (MMS). The transcripts of UVI-155 were not induced by treatment of $0.25\%$ MMS. These results implied that the effects of damaging agents are complex and different regulatory pathways exist for the induction of these genes. To characterize the UVI-155 gene, gene deletion experiments were analyzed. The deleted strain was not well grown. This result indicated that the UVI-155 gene is essential for cell viability.

본 연구는 DNA상해유도기작을 규명하기 위하여 하등 진핵생물인 분열형 효모 Schizosaccharomyces pombe로부터 subtraction hybridization방법을 이용하여 자외선 유도 유전자인 UVI-155을 분리하고 그 유전자 구조와 발현양상을 조사하였다. UVI-155 유전자의 발현양상을 Northern hybridization 방법으로 살펴본 결과 자외선(ultraviolet-light) 조사 1시간 후에 최대의 발현 증가를 나타내었다. 반면 알킬화제 인 MMS (methyl methanesulfonate) 처리에 의해서도 발현이 증가되었다. 이 결과 다른 UV-inducible 유전자와는 다르게 UVI-l55 유전자는 UV와 MMS 등의 DNA 상해에 모두 발현이 증가됨을 알 수 있었다. 또 한 유전자의 기능을 알기 위하여 null-mutant세포 주를 제조하여 그 특성을 살펴본 결과 이 유전자는 세포의 성장에 필수적인 유전자임을 알 수 있었다.

Keywords

References

  1. Boothmann, D. A., M. Meyers, N. Fukunaga and S. W. Lee. 1993. Isolation of X-ray-inducible transcripts from radioresistant human melanoma cells. Proc. Natl. Acid. Sci. USA. 90, 7200-7204
  2. Birkenbihl, R. P. and S. Subramani. 1992. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double strand break repair. Nuclei Acid Res. 20, 6605-6611 https://doi.org/10.1093/nar/20.24.6605
  3. Choi, I. S.1999. Isolation and characterization of new family genes DNA damage in yeast. Environmental Mutagens & Carcinogens. 19(1), 28-33
  4. Elledge, S. J. and R. W. Davis. 1987. Identification and isolation of the gene encoding the small submit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mototic viability. Mol. Cell. Biol. 7, 2783-2793 https://doi.org/10.1128/MCB.7.8.2783
  5. Feinberg, A. P. and B. A. Vogelstein. 1984. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266-267 https://doi.org/10.1016/0003-2697(84)90381-6
  6. Fornace, A. J, D. W. Nebert, M. C. Hollander, J. D. Luethy, M. Papathanasiou, J. Fargnoli and N. J. Holbrook. 1989. Mammalian genes coordinately regulated by growth arrest signal and DNA-damaging agents. Mol. Cell. Biol. 9, 4196-4203 https://doi.org/10.1128/MCB.9.10.4196
  7. Harosh, I. and P. Deschavanne. 1989. The RAD3 gene is a member of the DEAH family RNA helicase-like protein. Nucleic Acids Res. 19, 6331 https://doi.org/10.1093/nar/19.22.6331
  8. Jang, Y. K., Y. H. Jin, M. Kim, F. Fabre. S. H. Hong and S. D. Park. 1998. Molecular cloning of $rhp51^+$ gene in Schizosccharomyces pombe, whose amino acid sequence is highly conserved from prokarytic RecA to the mammalian Rad51 homolog. Gene. 5, 130-142
  9. Madura, K., and S. Prakash. 1990. Transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD23 increase in response to UV light and in meiosis but remain constant in the mitotic cell cycle. Necleic Acid Res. 18, 4737-4742 https://doi.org/10.1093/nar/18.16.4737
  10. Maga, J. A., T. A. McClanahan and K, McEntee. 1986. Transcriptional regulation of DNA damage responsive (DDR) genes in different rad mutant strains of Saccharomyces cerevisiae. Mol. Gen. Genet. 205, 276-284 https://doi.org/10.1007/BF00430439
  11. McClanahan, T. and K. McEntee. 1986. DNA damage and heat shock dually regulated genes in Saccharomyces cerevisiae. Mol Cell. Biol. 6, 90-95 https://doi.org/10.1128/MCB.6.1.90
  12. Montelone, B. A., S. Prakash and L. Prakash. 1981. Recombination and mutagenesis in rad6 mutants of Saccharomyces cerevisiae : Evidence for multiple functions of the RAD6 gene. Mol. Gen. Genet. 184, 410-415 https://doi.org/10.1007/BF00352514
  13. Morrison, A., E. J. Miller and L. Prakash. 1988. Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae. Mol. Cell Biol. 8, 1179-1185 https://doi.org/10.1128/MCB.8.3.1179
  14. Perozzi, G. and S. Prakash. 1986. RAD7 gene of Saccharomyses cerevisiae: transcript, nucleotide sequence analysis and functional relationship between the RAD7 and RAD23 gene products. Mol. Cell. Biol. 6, 1497-1507 https://doi.org/10.1128/MCB.6.5.1497
  15. Phipps, J., A. Nasim and D. R. Miller. 1985. Recovery, repair, and mutagenesis in Schizosaccharomyces pombe. Adv. Genetics. 23, 1-72 https://doi.org/10.1016/S0065-2660(08)60511-8
  16. Praekelt, U. M. and P. A. Macock. 1990. HSP12, a new small heat shock gene of Saccharomyces cerevisiae : analysis of structure, regulation and function. Mol. Gen. Genet. 233, 97-106
  17. Radman, M., G. Villani, S. Boiteux, A. R. Kinsella, B. W. Clickman and S. Spadari. 1978. Replication fidelity : mechanisms of mutation avoidance and mutation fixation. Cold Spring Harbor Symp. Quant, Biol. 43, 937-942
  18. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning. A laboratory mannual. Cold Spring Harbor
  19. Schild, D., B. Konfort, C. Perez, W. Gish and R. K. Mortimer. 1983. Isolation and characterization of yeast DNA repair genes. I. Cloning of the RAD52 gene. Curr. Genet. 7, 85-92 https://doi.org/10.1007/BF00365631
  20. Sung, P., S. Prakash and L. Prakash. 1982. The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediated the specificity. Genes. Dev. 2, 1476-1485 https://doi.org/10.1101/gad.2.11.1476
  21. Weinert, T. A. and L. H. Hartwell. 1990. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol. Cell. Biol. 54, 6564-6572