• Title/Summary/Keyword: S.I.F

Search Result 2,031, Processing Time 0.028 seconds

TWO-SIDED BEST SIMULTANEOUS APPROXIMATION

  • Rhee, Hyang Joo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.705-710
    • /
    • 2010
  • Let $C_1(X)$ be a normed linear space over ${\mathbb{R}}^m$, and S be an n-dimensional subspace of $C_1(X)$ with spaned by {$s_1,{\cdots},s_n$}. For each ${\ell}$- tuple vectors F in $C_1(X)$, the two-sided best simultaneous approximation problem is $$\min_{s{\in}S}\;\max\limits_{i=1}^\ell\{{\parallel}f_i-s{\parallel}_1\}$$. A $s{\in}S$ attaining the above minimum is called a two-sided best simultaneous approximation or a Chebyshev center for $F=\{f_1,{\cdots},f_{\ell}\}$ from S. This paper is concerned with algorithm for calculating two-sided best simultaneous approximation, in the case of continuous functions.

X-선 회절분석을 이용한 일라이트-스멕타이트 기본입자의 적층성에 관한 연구

  • 강일모;문희수
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.10-10
    • /
    • 2003
  • 일라이트-스멕타이트 혼합층광물(I-S)은 열역학적으로 상호 대립적인 두 가지 모델로 이해되고 있다. 첫째, MacEwan 결정자 모델은 I-S를 5-20개의 스멕타이트와 일라이트 층으로 구성된 결정자로 해석한다. 이러한 모델은 분산과 재응집 과정을 기초로 하는 X-선 회절분석(XRD)에서 기인한 것으로 Reynolds의 XRD 모델과 동일하다. 둘째, 기본입자 모델은 I-S를 물리적으로 분리될 수 있는 최소 입자인 기본입자가 $c^{*-}$축 방향으로 응집된 응집체로 해석한다. 이러한 모델은 분산 과정을 기초로 하는 주사전자현미경(TEM) 관찰에서 기인한 모델이다. 강일모 등(2002)은 이 두 가지 모델을 비교함으로써 1< $N_{F}$<100/% $S_{XRD}$ ( $N_{F}$=평균 기본입자 층개수, %$S_{XRD}$=XRD 분석을 통하여 측정된 팽창성)을 도출하였다. 이 식은 기본입자모델과 Eberl & Srodon(1988)이 제시한 최대 팽창성(%$S_{MAX}$)을 동시에 해석할 수 있게 해준다. %$S_{MAX}$는 XRD 모델에서는 고려하지 않는 I-S 결정자 상$\cdot$하부에 존재하는 두 개의 0.5nm 규산염층을 하나의 스멕타이트 층으로 간주하여 얻어진 팽창성이다. Srodon et al.(1992)은 %$S_{MAX}$=100/ $N_{F}$을 제시하였으며, 강일모 등(2002)은 %$S_{MAX}$는 기하학적으로 기본입자가 무한적층을 하였을 때 관찰되는 %$S_{XRD}$와 동일함을 밝힌 바 있다. 만약, XRD 분석을 위한 시료 준비과정에서 I-S 결정자가 분산되었다가 재응집을 한다면, XRD에서 관찰되는 결과는 일차적으로 기본입자의 적층성에 영향을 받게 된다. 따라서, 기본 입자의 적층성은 XRD 분석을 이용하여 I-S 구조를 해석하는데 매우 중요한 요인이다. 본 연구는 기본입자의 적층성을 정량화하기 위해 %$S_{XRD}$=A/ $N_{F}$ (0$S_{MAX}$=100/ $N_{F}$로부터 얼마나 벗어나 있는가는 지시해 준다 금성산화산암복합체에서 산출되는 11개 I-S 시료와 14개의 Drits et al.(1998) 자료로부터 1nA=-0.14 $N_{F}$+4.7의 실험식을 도출할 수 있었으며, 기본입자의 적층성은 일차적으로 기본입자의 두께에 의해 영향을 받는 것으로 관찰되었다. Nadeau(1985)는 기본입자두께분포로부터 I-S 결정자의 팽창성을 측정하기 위하여 Ps=$\Sigma$p(N)/N을 제시하였다(Ps=스멕타이트 층 비율, N=기본 입자 층개수, p(N)=N의 확율). 그러나 위식은 실질적으로 %$S_{MAX}$를 제공해주기 때문에 %$S_{XRD}$를 유추하는데는 부적합하다. 본 연구는 이를 변형하여 Ps=$\Sigma$p(N)A(N)/N을 제시하였다(A(N)=N에 대한 A값). 위의 실험식을 사용하여 헝가리산 Zempleni 시료(15%$S_{XRD}$)의 기본입자분포로부터 %$S_{XRD}$를 계산한 결과, 16%$S_{XRD}$의 결과값을 얻을 수 있었다. 따라서, 본 연구에서 도출한 관계식들이 유효함을 확인할 수 있었다.계식들이 유효함을 확인할 수 있었다.

  • PDF

Distribution von Pronomina in A.cI.-Konstruktionen (A.c.I.-구문에서의 대명사 분포에 관한 연구)

  • Kim Youn-Chan
    • Koreanishche Zeitschrift fur Deutsche Sprachwissenschaft
    • /
    • v.7
    • /
    • pp.105-125
    • /
    • 2003
  • Personal- und Reflexivpronomen stehen in einer komplementaren Beziehung zueinander. Die vorliegende Arbeit zeigt, welches von beiden Pronomen verschiedenen AcI-Konstruktionen jeweils richtig ist Vor allem stelle ich hier die These auf, dass Grammatik in erster Linie ein Regelwerk ist und dass dernzufolge $S\"{a}tze$ mit gleicher Struktur immer einheitlich und konsistent mit denselben Regeln $erkl\"{a}rt$ werden sollten: (1) a. Der Gefangen $l\"{a}sst$ den Polizisten auf ${\ast}sich_i/ihn_i$ achten. b. $Hans_i{\;}l\"{a}sst$ Maria zu $sich_i/{\ast}ihm_i$ kommen. (2) a. $Peter_i$ sieht Hans von ${\ast}sich_i/ihm_i$ betrogen. b. $Hans_i{\;}f\"{u}hlt$ die Freundin von $sich_i/{\ast}ihm_i$ weggezogen. Bei diesen Beispielen liegt der Verteilungsunterschied der Pronomina nicht an Grammatikregeln sondern am individuellen Sprachgebrauch. Ferner wird hier darauf hingewiesen, dass die AcI-Verben mit Ausnahme des Verbs lassen a1s 3-wertige Verben so wie die $S\"{a}tze$ in Beispiel (3) zu behandein sind D.h., die Struktur $f\"{u}r$ AcI-Konstruktionen sieht so aus wie (4b), nicht wie (4a). Betrachten wir dies noch einmal an einem Beispiel: (3) a. Ich sehe mich $m\"{u}de$ b. Ich $f\"{u}hle$ mich viel besser.

  • PDF

GAUSSIAN QUADRATURE FORMULAS AND LAGUERRE-PERRON@S EQUATION

  • HAJJI S. EL;TOUIJRAT L.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.205-228
    • /
    • 2005
  • Let I(f) be the integral defined by : $I(f) = \int\limits_{a}^{b} f(x)w(x)dx$ with f a given function, w a nonclassical weight function and [a, b] an interval of IR (of finite or infinite length). We propose to calculate the approximate value of I(f) by using a new scheme for deriving a non-linear system, satisfied by the three-term recurrence coefficients of semi-classical orthogonal polynomials. Finally we studies the Stability and complexity of this scheme.

A Swap Optimization for Dynamic Economic Dispatch Problem with Non-smooth Function (비평활 발전비용함수를 가진 동적 경제급전문제의 교환 최적화)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.189-196
    • /
    • 2012
  • This paper proposes Swap algorithm for solving Dynamic Economic Dispatch (DED) problem. The proposed algorithm initially balances total load demand $P_d$ with total generation ${\Sigma}P_i$ by deactivating a generator with the highest unit generation cost $C_i^{max}/P_i^{max}$. It then swaps generation level $P_i=P_i{\pm}{\Delta}$, (${\Delta}$=1.0, 0.1, 0.01, 0.001) for $P_i=P_i-{\Delta}$, $P_j=P_j+{\Delta}$ provided that $_{max}[F(P_i)-F(P_i-{\Delta})]$ > $_{min}[F(P_j+{\Delta})-F(P_j)]$, $i{\neq}j$. This new algorithm is applied and tested to the experimental data of Dynamic Economic Dispatch problem, demonstrating a considerable reduction in the prevalent heuristic algorithm's optimal generation cost and in the maximization of economic profit.

Balance-Swap Optimization of Economic Load Dispatch Problem using Quadratic Fuel Cost Function (이차 발전비용함수를 사용한 경제급전문제의 균형-교환 최적화)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.243-250
    • /
    • 2014
  • In this paper, I devise a balance-swap optimization (BSO) algorithm to solve economic load dispatch with a quadratic fuel cost function. This algorithm firstly sets initial values to $P_i{\leftarrow}P_i^{max}$, (${\Sigma}P_i^{max}$ > $P_d$) and subsequently entails two major processes: a balance process whereby a generator's power i of $_{max}\{F(P_i)-F(P_i-{\alpha})\}$, ${\alpha}=_{min}(P_i-P_i^{min})$ is balanced by $P_i{\leftarrow}P_i-{\alpha}$ until ${\Sigma}P_i=P_d$; and a swap process whereby $_{max}\{F(P_i)-F(P_i-{\beta})\}$ > $_{min}\{F(P_i+{{\beta})-F(P_j)\}$, $i{\neq}j$, ${\beta}$ = 1.0, 0.1, 0.1, 0.01, 0.001 is set at $P_i{\leftarrow}P_i-{\beta}$, $P_j{\leftarrow}P_j+{\beta}$. When applied to 15, 20, and 38-generators benchmark data, this simple algorithm has proven to consistently yield the best possible results. Moreover, this algorithm has dramatically reduced the costs for a centralized operation of 73-generators - a sum of the three benchmark cases - which could otherwise have been impossible for independent operations.

Linear Free Energy Relationship on the Chemical Shift of Imidoyl Proton in N-benzylideneaniline Derivatives by PMR Spectrometry (核磁氣 共鳴分光法에 義한 N-Benzylideneaniline 誘導體중 Imidoyl Proton 의 Chemical Shift 에 미치는 自由에너지 關係)

  • Nack Do Sung;Cheon Kyu Park;Moon kyu Park;Ki Sung Kwon;Kim, Tae Rin
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.277-282
    • /
    • 1985
  • The effects of linear free energy relationship (LFER) on the imidoyl proton (H${\alpha}$)-substituent chemical shift (SCS) in case of varying para-substituted C-phenyl group in N-benzylideneaniline derivatives were studied. The H${\alpha}$-SCS values and LFER parameters such as ${\sigma}$,${\sigma}^+$, ${\sigma}_I$,${\sigma}_R, F and R were applied to the Hammett, Okamoto-Brown, and Taft, Swain-Lupton's dual substituents parameter (DSP) equations. The results were: (1) the blending coefficient values, ${\lambda}$ = 2.8∼3.2, it's means that the resonance effect (R) was larger than inductive effect (I) and field effect (F), and (2) the values of percent resonance and percent field effects were %R = 66.6 and %F = 33.4, respectively, yielding the ratio of resonance effect (R) to field effect (F) of 2 : 1.

  • PDF

Power Loss and Electro-Magnetic Characteristics of Ni-Cu-Zn Ferrites (Ni-Cu-Zn페라이트의 손실과 자성 특성)

  • Otsuki E.;Kim Jeong-Su
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.12a
    • /
    • pp.3-11
    • /
    • 2004
  • The power loss analysis was carried out for Ni-Cu-Zn ferrite samples with different content of NiO and ZnO. The power loss, Pcv decreases monotonically wi increasing temperature and attains to a certain value at around $100\~120$ degrees Celsius. The frequency dependence of Pcv can be explained by $Pcv\~f^n$', and n is independent of the frequency, f up to 1MHz. The Pcv decreases with an increase in ZnO/NiO. The Pcv was separated to hysteresis loss, Ph and residual loss, (Pcv-Ph). The temperature characteristics and compositional dependence of Pcv can be attributed to the Ph, while (Pcv-Ph) is not affected by both temperature and ZnO/NiO. By analyzing temperature and composition dependence of Ph and initial permeability, ${\mu}^i$ following equations could be formularized. $${\mu}_i{\mu}o=I_x\;^2/(K_1+bs_ol_s)\;\;\;\;(1)$$ $Wh=13.5(I_s\;^2/{\mu}_i{\mu}_o)\;\;\;\;(2)$$ Were ${\mu}_o$ is permeability of vacuum, $I_s$ saturation magnetization, $K_1$ anisotropy constant, $S_o$ internal heterogeneous stress, $I_s$, magnetostriction constant, b unknown constant. Wh hysteresis loss per one cycle of excitation (Ph: Wh*f). Steinmetz constant of Ni-Cu-Zn ferrites, $m=1.64\~2.2$ is smaller than the one of Mn-Zn ferrites, which suggests the difference of loss mechanism between these materials.

  • PDF

Characterization of Endoglucanase (F-I-III) Purified from Trichoderma sp. C-4 (새로운 섬유소분해 균주 Trichoderma sp. C-4에서 분리한 Endoglucanase (F-I-III)에 대한 연구)

  • Sul Ok Ju;Chung Dae Kyun;Han In Seob;Jeong Choon Soo
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.81-86
    • /
    • 2005
  • One of the endoglucanases, F-I-III, was purified from the culture filtrate of T. sp. C-4 through procedures including chromatography on Sephacryl S-200, DEAE-Sepharose A-50, and Chromatofocusing on Mono-P (FPLC). The molecular weight of the enzyme was determined to be about 56,000 Da by SDS-PAGE, and pI of 4.9 by analytical isoelectric focusing. F-I-III showed the highest enzyme activity at $55^{\circ}C$, and the pH optimum of the enzyme was 5.0. There was no loss of activity when the enzyme was incubated at $50^{\circ}C$ for 24 hours. The specific activity of the enzyme F-I-III toward the CMC was 315.4 U/mg. The Km value for $PNPG_2$ of F-I-III was 2.69 mM. N-terminal sequence of F-I-III was analyzed to be QPGTSTPEVHPKKLTTYK. It showed $95\%$ of homology to that of EGI from T. reesei. The presence of some metal ions (1 mM) had only a little effect on CMCase activity. The treatment of the reducing agents resulted in the increase of endoglucanase activity.

ON STABILITY PROBLEMS WITH SHADOWING PROPERTY AND ITS APPLICATION

  • Chu, Hahng-Yun;Han, Gil-Jun;Kang, Dong-Seung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.673-688
    • /
    • 2011
  • Let $n{\geq}2$ be an even integer. We investigate that if an odd mapping f : X ${\rightarrow}$ Y satisfies the following equation $2_{n-2}C_{\frac{n}{2}-1}rf\(\sum\limits^n_{j=1}{\frac{x_j}{r}}\)\;+\;{\sum\limits_{i_k{\in}\{0,1\} \atop {{\sum}^n_{k=1}\;i_k={\frac{n}{2}}}}\;rf\(\sum\limits^n_{i=1}(-1)^{i_k}{\frac{x_i}{r}}\)=2_{n-2}C_{{\frac{n}{2}}-1}\sum\limits^n_{i=1}f(x_i),$ then f : X ${\rightarrow}$ Y is additive, where $r{\in}R$. We also prove the stability in normed group by using shadowing property and the Hyers-Ulam stability of the functional equation in Banach spaces and in Banach modules over unital C-algebras. As an application, we show that every almost linear bijection h : A ${\rightarrow}$ B of unital $C^*$-algebras A and B is a $C^*$-algebra isomorphism when $h(\frac{2^s}{r^s}uy)=h(\frac{2^s}{r^s}u)h(y)$ for all unitaries u ${\in}$ A, all y ${\in}$ A, and s = 0, 1, 2,....