• 제목/요약/키워드: S. coelicolor

검색결과 86건 처리시간 0.025초

Proteomics-Driven Identification of SCO4677-Dependent Proteins in Streptomyces lividans and Streptomyces coelicolor

  • Choi, Si-Sun;Kim, Seon-Hye;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.480-484
    • /
    • 2010
  • AfsR2 is a global regulatory protein that stimulates antibiotic biosynthesis in both Streptomyces lividans and S. coelicolor. Previously, various afsR2-dependent genes including a putative abaA-like regulatory gene, SCO4677, were identified through comparative DNA microarray analysis. To further identify the putative SCO4677-dependent proteins, the comparative proteomics-driven approach was applied to the SCO4677-overexpressing strains of S. lividans and S. coelicolor along with the wild-type strains. The 2D gel electrophoresis gave approximately 277 protein spots for S. lividans and 207 protein spots for S. coelicolor, showing different protein expression patterns between the SCO4677-overexpressing strains and the wild-type strains. Further MALDI-TOF analysis revealed that only 18 proteins exhibited similar expression patterns in both S. lividans and S. coelicolor, suggesting that the SCO4677 could encode an abaA-like regulator that controls a few cross-species common proteins as well as many species-specific proteins in Streptomyces species.

Streptomyces coelicolor A[3]2에서 Mycothiol 생합성에 관여하는 Inositol Monophosphatase 유전자의 클로닝 및 발현 (Cloning and Expression of Inositol Monophosphatase Gene from Streptomyces coelicolor A[3]2)

  • 김진권;최학선;김성준;김시욱
    • KSBB Journal
    • /
    • 제19권6호
    • /
    • pp.462-466
    • /
    • 2004
  • S. coelicolor A3(2)로부터 항산화 저분자 thiol분자인 MSH를 HPLC 및 monobromobimane 형광 검출 방법으로 분리${\cdot}$정제하여 그 존재를 확인하였다. 표준물질인 MSH-bimane과 동일하게 용출되는 MSH 분획을 확인하였으며 여러 thiol 분획 중 MSH 분획이 가장 많은 것으로 보아 MSH가 S. coelicolor의 주된 thiol 화합물로 판단되었다. MSH 생합성에 관여하는 효소 중 I-1-Pase의 유전자의 기능을 알아보기 위하여 이 유전자를 방선균에서 분리한 후 대장균에 클로닝하여 과도발현시켰다. 발현된 I-1-Pase를 Ni-NTA column을 사용하여 정제하였다. 정제된 I-1-Pase는 soluble protein으로 281개 아미노산으로 구성되어 있으며 분자량은 32 kDa이었다. 인간 및 대장균의 I-1-Pase와 각각 24와 $25\%$의 sequence homology를 보였으며, 기존의 I-1-Pase가 가지고 있는 공통의 I-1-Pase motif A와 motif B를 S. coelicolor A3(2)도 가지고 있는 것으로 확인되었다.

Streptomyces coelicolor A3(2)에서 hrdA유사 Sigma 인자 유전자의 클로닝 (Cloning of hadA-like Sigma Factor Gene from Streptomyces coelicolor A3(2))

  • 한지숙;조은정;노정혜
    • 미생물학회지
    • /
    • 제32권4호
    • /
    • pp.264-270
    • /
    • 1994
  • 세균의 RNA 중합효소에서 여러 ${\sigma}$ 인자들 간에 보존된 아미노산 서열중 2.3 부위와 4.2 부위의 아미노산 서열로부터 유 n하여 두가지의 PCR primer를 제작하였다. 이들을 이용하여 PCR을 수행하였을 때, E. coli와 Streptomyces coelicolor의 DNA로부터 예상되었던 480 bp 정도의 DNA가 증폭되는 것을 관찰하였다. E. coli DNA에서 증폭된 DNA를 클로닝하여 염기서열을 결정한 결과 E. coli의 rpoS 유전자로부터 유래하였음을 알았다. 이를 탐침으로 S. coelicolor에서 genomic DNA hybridization을 수행하였을 때, PvuII 절편 두가지 (3.5 kb, 2.0 kb) 와 SalI 절편 두가지(3.4kb, 1.5 kb)에 탐침이 결합하는 것을 관찰하였다. 3.5 kb의 pvuII 절편을 sublibrary로부터 클로닝하고, 탐침이 결합하는 1.0kb의 BamHI/HincII 절편의 염기서열을 분석하였다. 부분적으로 결정된 염기서열을 BLAST 프로그램을 이용하여 GenBank와 EMBL, PDB 등의 data library의 유전자들과 비교하여 본 결과Streptomyces속의 ${\sigma}$인자들을 비롯한 Synechococcus종, Anabaena종, Pseudomonas aeruginosa, Stigmatella aurantica 등의 주된 ${\sigma}$ 인자와 높은 유사성을 보였다. 현재까지 1.2 부위와 4 부위에 해당하는 부분의 염기서열을 결정하였는데, 이 부분은 S. coelicolor에서 알려진 다섯가지의 ${\sigma}$ 인자 유전자 중 hrdA와 가장 높은 유사성을 보이며, 아미노산의 유사성이 1.2부위에서는 88%, 4 부위에서는 75%인 것으로 나타났다.

  • PDF

Sequence Analysis and Potential Action of Eukaryotic Type Protein Kinase from Streptomyces coelicolor A3(2)

  • Roy, Daisy R.;Chandra, Sathees B.C.
    • Genomics & Informatics
    • /
    • 제6권1호
    • /
    • pp.44-49
    • /
    • 2008
  • Protein kinase C (PKC) is a family of kinases involved in the transduction of cellular signals that promote lipid hydrolysis. PKC plays a pivotal role in mediating cellular responses to extracellular stimuli involved in proliferation, differentiation and apoptosis. Comparative analysis of the PKC-${\alpha},{\beta},{\varepsilon}$ isozymes of 200 recently sequenced microbial genomes was carried out using variety of bioinformatics tools. Diversity and evolution of PKC was determined by sequence alignment. The ser/thr protein kinases of Streptomyces coelicolor A3 (2), is the only bacteria to show sequence alignment score greater than 30% with all the three PKC isotypes in the sequence alignment. S.coelicolor is the subject of our interest because it is notable for the production of pharmaceutically useful compounds including anti-tumor agents, immunosupressants and over two-thirds of all natural antibiotics currently available. The comparative analysis of three human isotypes of PKC and Serine/threonine protein kinase of S.coelicolor was carried out and possible mechanism of action of PKC was derived. Our analysis indicates that Serine/ threonine protein kinase from S. coelicolor can be a good candidate for potent anti-tumor agent. The presence of three representative isotypes of the PKC super family in this organism helps us to understand the mechanism of PKC from evolutionary perspective.

Streptomyces coelicolor에서 secY 유전자의 클로닝과 염기서열 결정 (Molecular cloning and sequence Analysis of the Gene for SecY from Streptomyces coelicolor (Muller))

  • 김상숙;현창구;김영민;이주헌;정인권;김대명;서주원
    • 한국미생물·생명공학회지
    • /
    • 제23권6호
    • /
    • pp.678-686
    • /
    • 1995
  • SecY is a central component of the protein export machinery that mediate the translocation of secretory proteins across the plasma membrane of Escherichia coli. In order to study the mechanism of protein secretion in Streptomyces, we have done cloning and sequencing of the Streptomyces coelicolor secY gene by using polymerase chain reaction method. The nucleotide sequence of the gene for SecY from S. coelicolor showed over 58% identity to that of M. luteus. The deduced amino acid sequences were highly homologous to those of other known SecY polypeptides, all having the potential to form 10 transmembrane segments, and especially second, fifth, and tenth segments were particularly conserved, sharing greater than 75% identity with W. lute s SecY. We propose that the conserved membrane-spanning segments actively participate in protein export. In B. subtilis and E. coli, the secY gene is a part of the spc operon, is preceded by the gene coding for ribosomal protein L15, and is likety coupled transcriptionally and translationally to the upstream L15 gene. In the other hand, secY gene of S. coelicolor and M. luteus have its own promoter region, are coupled translationally with adk gene and pr sented in adk operon.

  • PDF

Formation and Dispersion of Mycelial Pellets of Streptomyces coelicolor A3(2)

  • Kim, Yul-Min;Kim, Jae-heon
    • Journal of Microbiology
    • /
    • 제42권1호
    • /
    • pp.64-67
    • /
    • 2004
  • The pellets from a culture of Streptomyces coelicolor A3(2) that were submerged shaken were disintegrated into numerous hyphal fragments by DNase treatment. The pellets were increasingly dispersed by hyaluronidase treatment, and mycelial fragments were easily detached from the pellets. The submerged mycelium grew by forming complexes with calcium phosphate precipitates or kaolin, a soil particle. Therefore, the pellet formation of Streptomyces coelicolor A3(2) can be considered a biofilm formation, including the participation of adhesive extracellular polymers and the insoluble substrates.

Negative Role of wblA in Response to Oxidative Stress in Streptomyces coelicolor

  • Kim, Jin-Su;Lee, Han-Na;Kim, Pil;Lee, Heung-Shick;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권6호
    • /
    • pp.736-741
    • /
    • 2012
  • In this study, we analyzed the oxidative stress response of wblA ($\underline{w}$hi$\underline{B}$-$\underline{l}$ike gene $\underline{A}$, SCO3579), which was previously shown to be a global antibiotic down-regulator in Streptomyces coelicolor. Ever since a WblA ortholog named WhcA in Corynebacterium glutamicum was found to play a negative role in the oxidative stress response, S. coelicolor wblA has been proposed to have a similar effect. A wblA-deletion mutant exhibited a less sensitive response to oxidative stress induced by diamide present in solid plate culture. Using real-time RT-PCR analysis, we also compared the transcription levels of oxidative stress-related genes, including sodF, sodF2, sodN, trxB, and trxB2, between S. coelicolor wild type and a wblA-deletion mutant in the presence or absence of oxidative stress. Target genes were expressed higher in the wblA-deletion mutant compared with wild type, both in the absence and presence of oxidative stress. Moreover, expression of these target genes in S. coelicolor wild type was stimulated only in the presence of oxidative stress, suggesting that WblA plays a negative role in the oxidative stress response of S. coelicolor, similar to that of C. glutamicum WhcA, through the transcriptional regulation of oxidative stress-related genes.

SCO6992, a Protein with β-Glucuronidase Activity, Complements a Mutation at the absR Locus and Promotes Antibiotic Biosynthesis in Streptomyces coelicolor

  • Jin, Xue-Mei;Choi, Mu-Yong;Tsevelkhoroloo, Maral;Park, Uhnmee;Suh, Joo-Won;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권11호
    • /
    • pp.1591-1600
    • /
    • 2021
  • Streptomyces coelicolor is a filamentous soil bacterium producing several kinds of antibiotics. S. coelicolor abs8752 is an abs (antibiotic synthesis deficient)-type mutation at the absR locus; it is characterized by an incapacity to produce any of the four antibiotics synthesized by its parental strain J1501. A chromosomal DNA fragment from S. coelicolor J1501, capable of complementing the abs- phenotype of the abs8752 mutant, was cloned and analyzed. DNA sequencing revealed that two complete ORFs (SCO6992 and SCO6993) were present in opposite directions in the clone. Introduction of SCO6992 in the mutant strain resulted in a remarkable increase in the production of two pigmented antibiotics, actinorhodin and undecylprodigiosin, in S. coelicolor J1501 and abs8752. However, introduction of SCO6993 did not show any significant difference compared to the control, suggesting that SCO6992 is primarily involved in stimulating the biosynthesis of antibiotics in S. coelicolor. In silico analysis of SCO6992 (359 aa, 39.5 kDa) revealed that sequences homologous to SCO6992 were all annotated as hypothetical proteins. Although a metalloprotease domain with a conserved metal-binding motif was found in SCO6992, the recombinant rSCO6992 did not show any protease activity. Instead, it showed very strong β-glucuronidase activity in an API ZYM assay and toward two artificial substrates, p-nitrophenyl-β-D-glucuronide and AS-BI-β-D-glucuronide. The binding between rSCO6992 and Zn2+ was confirmed by circular dichroism spectroscopy. We report for the first time that SCO6992 is a novel protein with β-glucuronidase activity, that has a distinct primary structure and physiological role from those of previously reported β-glucuronidases.

Proteomes Induced by S-Adenosyl-L-Methionine in Streptomyces coelicolor A3(2)

  • Kim Kwang-Pyo;Shin Choon-Shik;Lee Soo-Jae;Kim Ji-Hye;Young Jung-Mo;Lee Yu-Kyung;Ahn Joong-Hoon;Suh Joo-Won;Lim Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.799-803
    • /
    • 2006
  • It was reported that an accumulation of Sadenosyl-L-methionine increases production of actinorhodin in Streptomyces lividans and induces antibiotic biosynthetic genes. We also obtained the same result in Streptomyces coelicolor A3(2). Therefore, in order to identify proteins changed by the addition of S-adenosyl-L-methionine in S. coelicolor A3(2), LC/MS/MS analyses were carried out. Thirteen proteins that were not observed in the control were found.

Streptomyces coelicolor 리보핵산내부분해효소 RNase ES의 결합단백질 규명 및 기능분석 (Identification and Functional Analysis of Proteins Interacting with Streptomyces coelicolor RNase ES)

  • 김종명;송우석;김현리;고하영;이강석
    • 미생물학회지
    • /
    • 제43권1호
    • /
    • pp.72-75
    • /
    • 2007
  • Escherichia coli에서 RNA 분해와 가공에 있어서 중심적인 역할을 하는 RNase E의 동족체 단백질인 Streptomyces coelicolor RNase ES의 결합 단백질을 항체침전을 이용하여 탐색하였다. 무기인산을 이용하는 polyphosphate kinase와 리보핵산외부분해효소인 polynucleotide phophorylase의 동족체인 GPSI가 RNase ES와 함께 침전되는 것을 확인하였으며, 이는S. coelicolor에도 E. coli RNase E를 매개로 구성되는 다단백질복합체인 degradosome이 RNase ES에 의해 형성될 수 있음을 암시한다. 계통적으로 멀리 떨어진 이 두 세균에서 정제된 polynucleotide phosphorylase 동족체는 시험관에서의 RNA 분해 특성이 서로 유사함을 보였다. 이러한 실험 결과는 RNase ES가 E. coli degradosome과 유사한 기능과 구조를 가진 단백질 복합체를 형성함을 시사한다.