Browse > Article
http://dx.doi.org/10.4014/jmb.2108.08001

SCO6992, a Protein with β-Glucuronidase Activity, Complements a Mutation at the absR Locus and Promotes Antibiotic Biosynthesis in Streptomyces coelicolor  

Jin, Xue-Mei (Department of Bioscience and Bioinformatics, Myongji University)
Choi, Mu-Yong (Department of Biotechnology. The University of Suwon)
Tsevelkhoroloo, Maral (Department of Bioscience and Bioinformatics, Myongji University)
Park, Uhnmee (Department of Biotechnology. The University of Suwon)
Suh, Joo-Won (Department of Bioscience and Bioinformatics, Myongji University)
Hong, Soon-Kwang (Department of Bioscience and Bioinformatics, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.11, 2021 , pp. 1591-1600 More about this Journal
Abstract
Streptomyces coelicolor is a filamentous soil bacterium producing several kinds of antibiotics. S. coelicolor abs8752 is an abs (antibiotic synthesis deficient)-type mutation at the absR locus; it is characterized by an incapacity to produce any of the four antibiotics synthesized by its parental strain J1501. A chromosomal DNA fragment from S. coelicolor J1501, capable of complementing the abs- phenotype of the abs8752 mutant, was cloned and analyzed. DNA sequencing revealed that two complete ORFs (SCO6992 and SCO6993) were present in opposite directions in the clone. Introduction of SCO6992 in the mutant strain resulted in a remarkable increase in the production of two pigmented antibiotics, actinorhodin and undecylprodigiosin, in S. coelicolor J1501 and abs8752. However, introduction of SCO6993 did not show any significant difference compared to the control, suggesting that SCO6992 is primarily involved in stimulating the biosynthesis of antibiotics in S. coelicolor. In silico analysis of SCO6992 (359 aa, 39.5 kDa) revealed that sequences homologous to SCO6992 were all annotated as hypothetical proteins. Although a metalloprotease domain with a conserved metal-binding motif was found in SCO6992, the recombinant rSCO6992 did not show any protease activity. Instead, it showed very strong β-glucuronidase activity in an API ZYM assay and toward two artificial substrates, p-nitrophenyl-β-D-glucuronide and AS-BI-β-D-glucuronide. The binding between rSCO6992 and Zn2+ was confirmed by circular dichroism spectroscopy. We report for the first time that SCO6992 is a novel protein with β-glucuronidase activity, that has a distinct primary structure and physiological role from those of previously reported β-glucuronidases.
Keywords
Streptomyces coelicolor; SCO6992; actinorhodin; undecylprodigiosin; ${\beta}-glucuronidase$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anderson TB, Brian P, Champness WC. 2001. Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol. Microbiol. 39: 553-566.   DOI
2 Ryding NJ, Anderson TB, Champness WC. 2002. Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J. Bacteriol. 184: 794-805.   DOI
3 van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. 2018. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat. Prod. Rep. 35: 575-604.   DOI
4 Pisciotta A, Manteca A, Alduina R. 2018. The SCO1731 methyltransferase modulates actinorhodin production and morphological differentiation of Streptomyces coelicolor A3(2). Sci. Rep. 8: 13686.   DOI
5 Vara J, Lewandowska-Skarbek M, Wang YG, Donadio S, Hutchinson CR. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881.   DOI
6 Xu W, Huang J, Cohen SN. 2008. Autoregulation of AbsB (RNase III) expression in Streptomyces coelicolor by endoribonucleolytic cleavage of absB operon transcripts. J. Bacteriol. 190: 5526-5530.   DOI
7 Boukhris I, Dulermo T, Chouayekh H, Virolle MJ. 2016. Evidence for the negative regulation of phytase gene expression in Streptomyces lividans and Streptomyces coelicolor. J. Basic Microbiol. 56: 59-66.   DOI
8 Tomono A, Mashiko M, Shimazu T, Inoue H, Nagasawa H, Yoshida M, et al. 2006. Self-activation of serine/threonine kinase AfsK on autophosphorylation at threonine-168. J. Antibiot. 59: 117-123.   DOI
9 Rudolph MM, Vockenhuber MP, Suess B. 2015. Conditional control of gene expression by synthetic riboswitches in Streptomyces coelicolor. Methods Enzymol. 550: 283-299.   DOI
10 Horinouchi S. 2003. AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2). J. Ind. Microbiol. Biotechnol. 30: 462-467.   DOI
11 Tsevelkhorloo M, Kim SH, Kang DK, Lee CR, Hong SK. 2021. NADP+-dependent dehydrogenase SCO3486 and cycloisomerase SCO3480: key enzymes for 3,6-anhydro-L-galactose catabolism in Streptomyces coelicolor A3(2). J. Microbiol. Biotechnol. 31: 756-763.   DOI
12 Lopez-Garcia MT, Yague P, Gonzalez-Quinonez N, Rioseras B, Manteca A. 2018. The SCO4117 ECF sigma factor pleiotropically controls secondary metabolism and morphogenesis in Streptomyces coelicolor. Front. Microbiol. 9: 312.   DOI
13 Yuan D, Shen Z, Liu R, Chi Z, Zhu J. 2011. Study on the binding of cerium to bovine serum albumin. J. Biochem. Mol. Toxicol. 25: 263-268.   DOI
14 Chern CJ. 1977. Detection of active heteropolymeric beta-glucuronidase in hybrids between mouse cells and human fibroblasts with beta-glucuronidase deficiency. Proc. Natl. Acad. Sci. USA 74: 2948-2952.   DOI
15 Choi SS, Chi WJ, Lee JH, Kang SS, Jeong BC, Hong SK. 2001. Overexpression of the sprD gene encoding Streptomyces griseus protease D stimulates actinorhodin production in Streptomyces lividans. J. Microbiol. 39: 305-313
16 Kieser H, Bibb MJ, Buttner MJ, Chater FK, Hopwood DA. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK.
17 Medda S, Swank RT. 1985. Egasyn, a protein which determines the subcellular distribution of beta-glucuronidase, has esterase activity. J. Biol. Chem. 260: 15802-15808.   DOI
18 Marchler-Bauer A, Bryant SH. 2004. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32: 327-331.
19 Fernandez-Moreno MA, Martin-Triana AJ, Martinez E, Niemi J, Kieser HM, Hopwood DA, et al. 1992. abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J. Bacteriol. 174: 2958-2967.   DOI
20 Xu Z, Li Y. 2020. A MarR-family transcriptional factor MapR positively regulates actinorhodin production in Streptomyces coelicolor. FEMS Microbiol. Lett. 367: fnaa140.   DOI
21 Bhatia SK, Lee BR, Sathiyanarayanan G, Song HS, Kim J, Jeon JM, et al. 2016. Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production. 3Biotech. 6: 223.
22 Shu D, Chen L, Wang W, Yu Z, Ren C, Zhang W, et al. 2009. afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 81: 1149-1160.   DOI
23 Liu G, Chater KF, Chandra G, Niu G, Tan H. 2013. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol. Mol. Biol. Rev. 77: 112-143.   DOI
24 Chater KF. 2013. Curing baldness activates antibiotic production. Chem. Biol. 20: 1199-1200.   DOI
25 Nitta K, Carratore FD, Breitling R, Takano E, Putri SP, Fukusaki E. 2020. Multi-omics analysis of the effect of cAMP on actinorhodin production in Streptomyces coelicolor. Front. Bioeng. Biotechnol. 8: 595552.   DOI
26 Baumann U, Wu S, Flaherty KM, McKay DB. 1993. Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12: 3357-3364.   DOI
27 Kim DJ, Huh JH, Yang YY, Kang CM, Lee IH, Hyun CG, et al. 2003. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. J. Bacteriol. 185: 592-600.   DOI
28 Umeyama T, Tanabe Y, Aigle BD, Horinouchi S. 1996. Expression of the Streptomyces coelicolor A3(2) ptpA gene encoding a phosphotyrosine protein phosphatase leads to overproduction of secondary metabolites in S. lividans. FEMS Microbiol. Lett. 144: 177-184.   DOI
29 Demir Z, Bayraktar A, Tunca S. 2019. One extra copy of lon gene causes a dramatic increase in actinorhodin production by Streptomyces coelicolor A3(2). Curr. Microbiol. 76: 1045-1054.   DOI
30 Wang P, Jia Y, Wu R, Chen Z, Yan R. 2021. Human gut bacterial β-glucuronidase inhibition: An emerging approach to manage medication therapy. Biochem. Pharmacol. 190: 114566.   DOI
31 Paradis FW, Shareck F, Dupont C, Kluepfel D, Morosoli R. 1996. Expression and secretion of beta-glucuronidase and Pertussis toxin S1 by Streptomyces lividans. Appl. Microbiol. Biotechnol. 45: 646-651.   DOI
32 Gravenbeek ML, Jones GH. 2008. The endonuclease activity of RNase III is required for the regulation of antibiotic production by Streptomyces coelicolor. Microbiology 154(Pt 11): 3547-3555.   DOI
33 Brian P, Riggle PJ, Santos RA, Champness WC. 1996. Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system. J. Bacteriol. 178: 3221-3231.   DOI
34 Bentley SD, Chater KF, Cerdeno-Tarraga A-M, Challis GL, Thomson NR, James KD, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147.   DOI
35 Price B, Adamidis T, Kong R, Champness W. 1999. A Streptomyces coelicolor antibiotic regulatory gene, absB, encodes an RNase III homolog. J. Bacteriol. 181: 6142-6151.   DOI
36 Hesketh A, Kock H, Mootien S, Bibb M. 2009. The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 74: 1427-1444.   DOI
37 Park U, Suh JW, Hong SK. 2000. Genetic analysis of absR, a new abs locus of Streptomyces coelicolor. J. Microbiol. Biotechnol. 10: 169-175.
38 Hong SK, Kito M, Beppu T, Horinouchi S. 1991. Phosphorylation of the AfsR product, a global regulatory protein for secondary-metabolite formation in Streptomyces coelicolor A3(2). J. Bacteriol. 173: 2311-2318.   DOI
39 Lu T, Cao Q, Pang X, Xia Y, Xun L, Liu H. 2020. Sulfane sulfur-activated actinorhodin production and sporulation is maintained by a natural gene circuit in Streptomyces coelicolor. Microb. Biotechnol. 13: 1917-1932.   DOI