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AfsR2 is a global regulatory protein that stimulates
antibiotic biosynthesis in both Streptomyces lividans and
S. coelicolor. Previously, various afsR2-dependent genes
including a putative abaA-like regulatory gene, SC04677,
were identified through comparative DNA microarray
analysis. To further identify the putative SCO4677-dependent
proteins, the comparative proteomics-driven approach was
applied to the SCO4677-overexpressing strains of S. lividans
and S. coelicolor along with the wild-type strains. The 2D
gel electrophoresis gave approximately 277 protein spots
for S. lividans and 207 protein spots for S. coelicolor,
showing different protein expression patterns between the
SCO4677-overexpressing strains and the wild-type strains.
Further MALDI-TOF analysis revealed that only 18
proteins exhibited similar expression patterns in both S.
lividans and S. coelicolor, suggesting that the SCO4677
could encode an abaA-like regulator that controls a few
cross-species common proteins as well as many species-
specific proteins in Streptomyces species.
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The bacterial genus Streptomyces is well known for its
ability to produce a variety of secondary metabolites, including
medically important products such as antibiotics, antitumor
agents, immunosuppressors, and enzyme inhibitors [1, 6,
17]. Production of most secondary metabolites produced
by Streptomyces generally occurs during the stationary
phase of cell growth with complicated mechanisms, and
correlates temporally with the formation of aerial mycelium
in cultures grown on the surface of solid media [1, 3, 6,
13, 16]. Thus far, this complex Strepfomyces regulatory
network has been partially identified. Several key regulatory
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genes have been revealed; some of these affect only secondary
metabolite production, whereas others pleiotropically affect
both metabolite production and morphological differentiation,
suggesting the presence of multiple regulatory systems
[2, 3].

Among several previously reported regulatory genes
affecting the antibiotic biosynthetic pathways in Streptomyces
species is the afs gene family, which includes afsR, afsK,
and afsR2 5,7, 8, 24, 25]. The afsR2 in S. lividans, also
known as gfsS in S. coelicolor [17], is located immediately
3' to afsR, and encodes a 63-amino-acid protein of which
the function and mechanism might be related to the sigma-
factor protein [11]. Previously, the wild-type S. lividans,
which does not produce actinorhodin under a typical
growth condition, was successfully transformed into the
actinorhodin overproducing strain through a single chromosomal
integration of qfsR2 [12]. Then, the transcriptomics-driven
comparative DNA microarray analysis was applied to the
wild-type S. lividans and the afsR2-expressing actinorhodin
overproducing strain. Among several afsR2-dependent genes,
an abad-like putative regulatory gene, SCO4677, was
identified as one of the most-significantly upregulated
potential target gene [9]. An abad was previously reported
to encode an important regulatory factor for antibiotic
production in S. coelicolor [4]. Here, we report the
identification of several previously unknown SCO04677-
dependent proteins both in S. lividans TK21 and S
coelicolor M145, using 2D gel electrophoresis and MALDI-
TOF analysis.

The SC0O4677 was cloned via PCR amplification with a
BamHI-containing forward primer and Xbal-containing
reverse primer [forward primer: GGATCCtgagteacttctcacggtac;
reverse primer: GGAACCcacgttctgaggttaagett]. The PCR
was performed using a routinely used high G+C DNA
amplification program. PCR-amplified target genes included
the putative upstream ribosome binding site, start codon,
and stop codon sequences. The PCR-amplified 0.43-kb
product was cloned into a pGEM-T easy plasmid (Promega,
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Fig. 1. Schematic map of the plasmid containing SCO4677 in the
high-copy Streptomyces expression vector pSE34.

WI, U.S.A) and confirmed by sequencing. The BamHI-
Xbal fragment was subcloned into Streptomyces—E. coli
shuttle vector pSE34 (Fig. 1). The plasmid was introduced
into S. coelicolor M145 or S. lividans TK21 using the
polyethylene glycol (PEG)-mediated protoplast transformation
method, followed by the thiostrepton (zs7) selection
method [11]. These four transformants, S. lividans/pSE34,
S. lividans/p4677, S. coelicolor/pSE34, and S. coelicolor/
p4677, were individually cultured in R2YE liquid cultures
for 8 days, and the samples were harvested every 24 h to
determine cell growth and actinorhodin production. Unlike
afsR2, there was no significant blue antibiotic actinorhodin
production stimulated by the SCO4677 overexpression
both in S. coelicolor and S. lividans (data not shown). The
8-day cultures were then harvested and washed twice with
ice-cold PBS, followed by motor-driven homogenization
(PowerGenl125, Fisher Scientific, NH, U.S.A.) in sample
buffer [7 M urea, 2 M thiourea, 4% (w/v) CHAPS, 1% (w/v)
DTT, and 2% (v/v) pharmalyte] containing 1 mM benzamidine.
The protein samples were extracted for 1h at room
temperature with a vortex, and then centrifuged at 15,000
xg for 1 h at 15°C. The insoluble materials that remained
in the pellet were discarded, and only the soluble fraction
normalized in protein concentration was used for 2D gel
electrophoresis. The IPG dry strips were equilibrated for
12-16h with sample buffer [7M urea, 2 M thiourea
containing 2% (w/v) CHAPS, 1% (w/v) DTT, and 1% (w/v)
pharmalyte], after which they were loaded with 200 pg of
each sample. Isoelectric focusing (IEF) was performed at
20°C using a Multiphor II electrophoresis unit and EPS
3500 XL power supply (Amersham Biosciences, NI,
U.S.A.) following the instructions of the manufacturer. For

IEF analysis, the voltage was linearly increased from 150
to 3,500 V over the course of 3 h for sample entry, followed
by a constant 3,500 V and completed focusing after 96 kVh.
Prior to the second dimension, strips were incubated for
10 min in equilibration buffer (50 mM Tris-Cl, pH 6.8,
containing 6 M urea, 2% SDS, and 30% glycerol), the first
round with 1% DTT and the second with 2.5% iodoacetamide.
The equilibrated strips were inserted onto SDS—PAGE gels
(23 cm, 10-16%). The SDS—PAGE was performed using
a Hoefer DALT 2D system (Amersham Biosciences, NJ,
U.S.A.) following the instructions of the manufacturer.
The 2D gels were run at 20°C for 1,700 Vh, and were then
silver-stained as described by Oakley et al. [19] without
fixing and sensitization steps.

Quantitative analysis of digitized images was carried out
using the PDQuest software (version 7.0; BioRad, CA, U.S.A.)
according to the protocols provided by the manufacturer.
The quantity of each spot was normalized by total valid
spot intensity. Protein spots were selected for the significant
expression variations, which deviated over 2-fold in expression
level compared with the control sample. Protein spots
were enzymatically in-gel digested using modified porcine
trypsin in a manner similar to that previously described by
Shevchenko et al. [20]. Gel pieces were washed with 50%
acetonitrile to remove SDS, salt, and stain. The dried gel
pieces were rehydrated with trypsin (8—10 ng/ul) and
incubated for 8—10 h at 37°C. The proteolytic reaction was
terminated by the addition of 5 ul of 0.5% trifluoroacetic
acid. Tryptic peptides were recovered by combining the
aqueous phase from several extractions of gel pieces with
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Fig. 2. 2D gel electrophoresis using a 23 cm large gel system
(10~16% gradient).

A. Empty-vector-containing S. coelicolor M145 (left) and SCO4677-
containing S. coelicolor (right). B. Empty-vector-containing S. lividans
TK21 (left) and SCO4677-containing S. /ividans TK21 (right).



482 Choietal.

50% aqueous acetonitrile. After concentration, the peptide
mixture was desalted using C¢ZipTips (Millipore) and
eluted in 1-5 pl of acetonitrile. An aliquot of this solution
was mixed with an equal volume of a saturated solution of
o-cyano-4-hydroxycinnamic acid in 50% aqueous acetonitrile,
and 1 pl of mixture was spotted onto a target plate. Based
on two independent 2D gel electrophoresis experiments
with ranges of pH 4-10 and pH 4-7, approximately 1,600
protein spots with 207 spots in S. coelicolor and 277 spots
in S. lividans showing intensity differences of approximately
more than 1.5-fold were identified, respectively (Fig. 2 and 3).

Among protein spots identified above, the most noticeable
18 protein spots exhibiting similar expression patterns by
both S. coelicolor and S. lividans were further characterized
using MALDI-TOF. Protein analyses were performed
using an Ettan MALDI-TOF (Amersham Biosciences, CA,
U.S.A.). The peptides were evaporated with a N, laser at
337 nm, using a delayed extraction approach. They were
accelerated with 20-kV injection pulses for time-of-flight
analysis. Each spectrum was the cumulative average of 300
laser shots. The search program ProFound, developed by The

M145

M145

TK21

Rockefeller University (http://129.85.19.192/profound bin/
WebProFound.exe), was used for protein identification by
peptide mass fingerprinting. Spectra were calibrated with
trypsin autodigestion ion peak m/z (842.510 and 2,211.1046)
as internal standards. The identification of all of the proteins
analyzed by MALDI-TOF was successfully determined
owing to the complete genome sequence information of S.
coelicolor (Table 1). Among 18 proteins identified by
MALDI-TOF analysis, all turned out to be SCO4677-
dependent overexpressed proteins both in S. lividans TK21
and S. coelicolor M 145, except for the SCO0546-encoding
pyruvate carboxylase (Fig. 3). Although the biological
significance of these SCO4677-dependent proteins needs
to be further pursued, one of the most interesting observations
described here in proteomics-driven identification is that
the relatively small portions (18 out of over 200 proteins)
were similarly regulated in both S. lividans and S.
coelicolor species. In conclusion, an abaA-like regulatory
gene, SCO4677, could control a few cross-species common
proteins as well as many species-specific proteins in
Streptomyces species, implying that Streptomyces comparative

pSE34

p4677

Fig. 3. Protein spot images showing different intensities on 2D gel electrophoresis between empty-vector-containing S. coelicolor M145
(or S. lividans TK21) and SCO4677-containing S. coelicolor (or S. lividans TK21).
A; 1501 (SCO1089), B; 4314 (SCO7511), C; 4529 (SC0O3052), D; 4818 (SCO0546).
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Table 1. List of SCO4677-dependent overexpressed proteins both in S. /ividans TK21 and S. coelicolor M145, identified by MALDI-

TOF analysis.

SpotID  PI M.W Identification Fold of increase  SCO number
209 4.20 30.46  Hypothetical protein 1.9 SC0O4506
214 429 30.90  6-Phosphogluconate dehydrogenase 1.6 SCO3877

1501 430  47.55  Hypothetical protein 3.5 SCO1089
2406  4.62 41.87  Zinc-containing dehydrogenase 24 SCO0179
3104 483 28.90  Triosephosphate isomerase 1.5 SCO1945
3304 481 35.82  Malate dehydrogenase 1.6 SC04827
3509 491 44.49  3-Phosphoshikimate 1-carboxyvinyltransferase 1.6 SCO5212
4314 513 38.06  Glyceraldehyde-3-phosphate dehydrogenase 1.5 SCO7511
4404 505 4236  Acyl-coA dehydrogenase 3.1 SCO1198
4520 519 4537  UDP-glucose-6-dehydrogenase 33 SCO3052
4813 5.11 88.75  Pyruvate carboxylase 0.4 SCO0546
6006 548 1429 Ribose-5-phosphate isomerase B 1.3 SCO2627
6507 549 46.95  Secreted protein 3.1 SCO6276
6623  5.63 48.31  Protoporphyrinogen oxidase 14 SCO6041
6701 5.44 60.27  Succinate dehydrogenase 4.0 SC00923
6714 575 55.98  Uroporphyrin-III C-methyltransferase/uroporphyrinogen-111 synthase 2.8 SCO3317
7302 5.86 38.23  Hypothetical protein 1.9 SCO6660
7521  6.57 44.56  Serine hydroxymethyl transferase 1.7 SCO5470

*Spot ID 4813, SCO0546-encoding pyruvate carboxylase was identified as a SCO4677-dependent less-expressed gene product in both S. /ividans and S.

coelicolor.

proteomics should be a valuable method for identification
of previously unidentified proteins involved in Streptomyces
regulatory cascade systems.
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