Browse > Article
http://dx.doi.org/10.4014/jmb.0910.11004

Proteomics-Driven Identification of SCO4677-Dependent Proteins in Streptomyces lividans and Streptomyces coelicolor  

Choi, Si-Sun (Department of Biological Engineering, Inha University)
Kim, Seon-Hye (Department of Biological Engineering, Inha University)
Kim, Eung-Soo (Department of Biological Engineering, Inha University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.3, 2010 , pp. 480-484 More about this Journal
Abstract
AfsR2 is a global regulatory protein that stimulates antibiotic biosynthesis in both Streptomyces lividans and S. coelicolor. Previously, various afsR2-dependent genes including a putative abaA-like regulatory gene, SCO4677, were identified through comparative DNA microarray analysis. To further identify the putative SCO4677-dependent proteins, the comparative proteomics-driven approach was applied to the SCO4677-overexpressing strains of S. lividans and S. coelicolor along with the wild-type strains. The 2D gel electrophoresis gave approximately 277 protein spots for S. lividans and 207 protein spots for S. coelicolor, showing different protein expression patterns between the SCO4677-overexpressing strains and the wild-type strains. Further MALDI-TOF analysis revealed that only 18 proteins exhibited similar expression patterns in both S. lividans and S. coelicolor, suggesting that the SCO4677 could encode an abaA-like regulator that controls a few cross-species common proteins as well as many species-specific proteins in Streptomyces species.
Keywords
SCO4677; proteomics; cross-species regulation; Streptomyces;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Chater, K. F. 1990. Multilevel regulation of Streptomyces differentiation. Trends Genet. 5: 372-377.
2 Shevchenko, A., M. Wilm, O. Vorm, and M. Mann. 1996. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68: 850-858.   DOI   ScienceOn
3 Kim, C. Y., H. J. Park, and E.-S. Kim. 2005. Proteomics-driven identification of putative AfsR2-target proteins stimulating antibiotic biosynthesis in Streptomyces lividans. Biotechnol. Bioproc. Eng. 10: 248-253.   DOI
4 Matsumoto, A., H. Ishizukz, T. Beppu, and S. Horinouchi. 1995. Involvement of a small ORF downstream of the afsR gene in the regulation of secondary metabolism in Streptomyces coelicolor A3(2). Actinomycetologica 9: 37-43.   DOI   ScienceOn
5 Hara, O., S. Horinouchi, T. Uozumi, and T. Beppu. 1983. Genetic analysis of A-factor synthesis in Streptomyces coelicolor A3(2) and Streptomyces griseus. J. Gen. Microbiol. 129: 2939-2944.
6 Sprusansky, O., B. Rezuchova, D. Homerova, and J. Kormanec. 2001. Expression of the gap gene encoding glyceraldehyde-3-phosphate dehydrogenase of Streptomyces aureofaciens requires GapR, a member of the AraC/XylS family of transcriptional activators. Microbiology 147: 1291-1301.
7 Nakamura, Y., C. Asada, and T. Sawada. 2004. Production of antibacterial violet pigment by psychrotropic bacterium RT102 strain. Biotechnol. Bioproc. Eng. 8: 37-40.
8 Stein, D. and S. N. Cohen. 1989. A cloned regulatory gene of Streptomyces lividans can suppress the pigment deficiency phenotype of different development mutants. J. Bacteriol. 171: 2258-2261.
9 Oakley, B. R., D. R. Kirsch, and N. R. Morris. 1980. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Anal. Biochem. 105: 361-363.   DOI   ScienceOn
10 Sohlberg, B., J. Huang, and S. N. Cohen. 2003. The Streptomyces coelicolor polynucleotide phosphorylase homologue, and not the putative poly(A) polymerase, can polyadenylate RNA. J. Bacteriol. 185: 7273-7278.   DOI   ScienceOn
11 Fernandez-Moreno, M. A., A. J. Martin-Triana, E. Martinez, J. Niemi, H. M. Kieser, D. A. Hopwood, and F. Malpartida. 1992. abaA, a new pleiotropic regulatory locus for antibiotic production in Streptomyces coelicolor. J. Bacteriol. 174: 2958-2967.
12 Kormanec, J., A. Lempel'ova, R. Novakova, B. Rezuchova, and D. Homerova. 1997. Expression of the Streptomyces aureofaciens glyceraldehyde-3-phosphate dehydrogenase gene (gap) is developmentally regulated and induced by glucose. Microbiology 143: 3555-3561.   DOI   ScienceOn
13 Horinouchi, S., M. Kito, M. Nishiyama, K. Furuya, S. K. Hong, K. Miyake, and T. Beppu. 1992. Primary structure of AfsR, a global regulatory protein for secondary metabolite formation in Streptomyces coelicolor A3(2). Gene 95: 49-56.
14 Kim, C. Y., H. J. Park, and E.-S. Kim. 2006. Functional dissection of sigma-like domain in antibiotic regulatory gene, afsR2 in Streptomyces lividans. J. Microbiol. Biotechnol. 16: 1447-1480.
15 Champness, W. C. and K. F. Chater. 1994. Regulation and integration of antibiotic production and morphological differentiation in Streptomyces spp., pp. 61-93. In P. J. Piggot, C. P. Moran Jr., and P. Youngman (eds.). Regulation of Bacterial Differentiation. American Society for Microbiology, Washington DC, U.S.A.
16 Kim, C. Y., J. H. Noh, H. N. Lee, and E.-S. Kim. 2009. Functional analysis of an antibiotic regulatory gene, afsR2 in S. lividans, through DNA microarray system. Korean J. Biotechnol. Bioeng. 24: 259-266.
17 Kim, E.-S., H.-J. Hong, C.-Y. Choi, and S. N. Cohen. 2001. Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. J. Bacteriol. 183: 2198-2203.   DOI   ScienceOn
18 Vogtli, M., P. C. Chang, and S. N. Cohen. 1994. afsR2: A previously undeleted gene encoding a 63-amino-acid protein that stimulates antibiotic production in Streptomyces lividans. Mol. Microbiol. 14: 643-653.   DOI   ScienceOn
19 Champness, W. C., P. Riggle, T. Adamidis, B. Kenney, and D. Aceti. 1993. Genetic elements involved in global antibiotic regulation in Streptomyces coelicolor, pp. 227-233. In R. Baltz et al. (ed.). Industrial Microorganisms: Basic and Applied Molecular Genetics. American Society for Microbiology, Washington DC, U.S.A.
20 Lee, K. J. and J. Y. Lim. 2004. Optimized conditions for high erythritol production by Penicillium sp. KJ-UV29, mutant of Penicillium sp. KJ81. Biotechnol. Bioproc. Eng. 8: 173-178.
21 Hopwood, D. A. 1988. Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production. Proc. R. Soc. Lond. Series B 235: 121-138.
22 Kim, J. H., J. S. Lim, and S. W. Kim. 2004. The improvement of cephalosporin C production by fed-batch culture of Cephalosporium acremonium M25 using rice oil. Biotechnol. Bioproc. Eng. 9: 459-464.   DOI
23 Horinouchi, S., O. Hara, and T. Beppu. 1983. Cloning of a pleiotropic gene that positively controls biosynthesis of Afactor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J. Bacteriol. 155: 1238-1248.
24 Kim, C. Y., H. J. Park, Y. J. Yoon, H. Kang, and E.-S. Kim. 2004. Stimulation of actinorhodin production by Streptomyces lividans with a chromosomally-integrated antibiotic regulatory gene afsR2. J. Microbiol. Biotechnol. 14: 1089-1092.