• Title/Summary/Keyword: S. Cerevisiae

Search Result 927, Processing Time 0.029 seconds

Saccharomyces cerevisiae partially to completely ameliorates the adverse effects of aflatoxin on the in vitro rumen fermentation of buffalo diet

  • Singh, Ram;Koo, Jin Su;Park, Sungkwon;Balasubramanian, Balamuralikrishnan
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.1
    • /
    • pp.73-81
    • /
    • 2021
  • The current study investigated how Saccharomyces cerevisiae ameliorates the adverse effects of aflatoxin on in vitro rumen fermentation. In this study, five groups (T1: Control [basal feed]; T2: T1 + 300 ppb aflatoxin B1 [AFB1] and T3, T4, and T5: T2 with 0.05, 0.1, and 0.2% of S. cerevisiae, respectively) were prepared and incubated in vitro. The results revealed that truly degradable dry matter (TDDM), gas production (GP), microbial biomass production (MBP), truly degradable organic matter (TDOM), partitioning factor (PF), total volatile fatty acids (TVFA), acetate (A), propionate (P) and butyrate (B) values in the control group (T1) were higher (p < 0.05) than those of the AFB1 fed group (T2). The A : P ratio in the control group (T1) was reduced (p < 0.05) when compared to that of the T2 group. The TDDM, TDOM, GP, TVFA, A, P, and B values of T3, T4, and T5 improved with the increasing levels of S. cerevisiae; however, the values of group T5 were lower (p < 0.05) than that of the control. The values of MBP, A : P ratio and PF in group T5 were statistically similar to that of the control. It was concluded that the inclusion of S. cerevisiae (0.05 to 0.20%) to the AFB1 (300 ppb) contaminated feed partially to completely ameliorated the adverse effects of AFB1 on the in vitro rumen fermentation parameters.

The Optimization of Recombinant Protein Production using S. cerevisiae Mutant Y334 Suitable for GAL Promoter (GAL promoter에 적합한 효모변이주 Y334를 이용한 재조합 단백질 생산 최적화 방법 개발)

  • 강환구;전희진;이문원
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.181-187
    • /
    • 2000
  • The production of heterologous protein using GAL promoter in conventional S. cerevisiae has several problems to s이ve for c commercialization. In this research, S. cerevisiae mutant(reg1-501, gaI1), which cannot use galactose and has alleviated g glucose repression level, is used as host for optimizing induction of GAL promoter. In this experiment, the effects of specific g growth rate on specific recombinant protein expression rate were tested in both cases and optimum fed batch fermentation m method was obtained in both cases. Through these experiments, optimum condition of recombinant protein production by G GAL promoter using S. cerevisiae mutant (reg1-501, gal1) were found.

  • PDF

Screening of Natural Antimicrobial Plant Extract on Food Spoilage Microorganisms (식품 부패미생물의 증식을 억제하는 천연 항균성물질의 검색)

  • Lee, Byung-Wan;Shin, Dong-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.200-204
    • /
    • 1991
  • Certain parts of 36 kinds of plant were extracted by 75% ethanol and water. The extracts were tested their microbial inhibition activities against several food spoilage microorganisms, Bacillus subtilis, Lactobacillus plantarum, Leuconostoc mesenteroides, Pseudomonas fluorescens, Bacillus cereus and Saccharomyces cerevisiae. The ethanol extract of amur cork was shown inhibitory effect on all 6 species of the microorganisms tested. Chinese pepper, sesame cake, gromwell and oak were on 5 species except S. cerevisiae or P. fluorescens and bamboo leaves, lycopi herba, paulownia and rigida were on 4 species. In general amur cork exhibited the strongest inhibition with a few exceptions on certain species. By disc diffusion method, the ethanol extract of leaf mustard showed the highest inhibition effect on B. subtilis, amur cork on L.plantarum, L. mesenteroides and B. cereus, and amur cork and gallnut on P. fluorescens. Mostly the ethanol extracts in comparison with water extracts showed higher inhibition in most of plants but a few exhibited higher in water extracts.

  • PDF

Heat Resistance Studies of Selected Yeasts Isolated from Swollen Commerically Canned Peaches (부패된 복숭아 통조림으로부터 분리된 효모의 열저항성에 관한 연구)

  • Choi, Jeong-Yi;Park, Seung-Kyu;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.38-41
    • /
    • 1987
  • This investigation was to measure heat resistance (D and Z values) of ascospores of Saccharomyces cerevisiae Py9 and Saccharomyces chevalieri Pw7 isolated from swollen commercially canned peaches. Decimal reduction times (D values) of S. cerevisiae Py9 ascospores were 6.5 min at $58^{\circ}C$, 2.5 min at $60^{\circ}C$ and 1.25 min at $62^{\circ}C$. Those of S chevalieri Pw7 ascospores were 35.0 min at $58^{\circ}C$ 3.5min at $60^{\circ}C$ and 1.5 min at $62^{\circ}C$ Zvalues of S. cerevisiae and S. chevalienri ascospores were $5.5^{\circ}C$ and $3.4^{\circ}C$, respectively.

  • PDF

The Study on Recombinant Protein Production using S. cerevisiae Mutant Y334 Suitable for GAL Promoter (GAL promoter에 적합한 효모변이주 Y334의 회분식 배양에서의 재조합 단백질 발현특성)

  • Gang, Hwan-Gu;Lee, Mun-Won;Jeon, Hui-Jin
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.476-481
    • /
    • 1999
  • S. cerevisiae mutant(reg1-501, gal1), which cannot use galactose and has alleviated glucose repression level, is used as host for optimizing induction of GAL promoter. The optimum concentration of galactose as inducer for recombinant protein production and the galactose consumption rate have been tested with S. cerevisiae mutant and compared with conventional S. cerevisiae. The extent of glucose repression were investigated for both strain and the degradation pattern of produced foreign protein have been compared in both cases. The effect of pH on foreign protein degradation pattern were studied for both strains. The secetion efficiency of both strains were carried out. Through these experiments, optimum condition of recombinant protein production by GAL promoter using S. cerevisiae mutant (reg1-501, gal1) were found.

  • PDF

The Optimization of the Composition of Nitrogen Source in the Medium of Alcohol Fermentation of S. cerevisiae (S. cerevisiae에 의한 알콜배지에서 질소원 조성의 최적화 연구)

  • 허병기;유현주정재기
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.255-261
    • /
    • 1991
  • The effect of concentration of yeast extract and NH4Cl in the mediun of alcohol fermentation of S. cerevisiae ATCC 24858 on the fermentation characteristics, specific growth rate, sugar conversion, alcohol productivity was experimentally investigated. Regardless of initial sugar concentrations, the values of the above three characteristics increased with augument of concentration of yeast extract. However, the increasing tendency ceased above a certain concentration. The concentration of NH4Cl had little effect on the change of the three characteristics. The functional relationships between the concentration of yeast extract and the characteristics were different according to the initial sugar concentrations, but those between the ratio of yeast extract concentration to initial sugar concentration and the characteristics could be expressed as same forms respectively regardless of initial sugar concentrations. Also the values of the three characteristics approached to the maximum values around 0.085 of the ratio, but did not increase any more above 0.1 of the ratio. We have come to conclusion that the optimum ratio of the yeast extract concentration to the initial sugar concentration was about 0.085 and the ratio should not be decided as greater than 0.1 in the medium of alcohol fermentation of S. cerevisiae ATCC 24858.

  • PDF

Characterization of Excision Repair Genes Related to Damaged DNA Repair from Eukaryotic Cells

  • Choi, In-Soon;Jin, Yong-Hwan;Park, Sang-Dai
    • Environmental Mutagens and Carcinogens
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • The RAD4 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. A yeast RAD4 gene has been previously isolated by functional complementation. In order to identify the RAD4 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD4 DNA, and then isolated homologous C. cinereus chromosome. The insert DNA of the RAD4 homolog was contained 3.2 kb. Here, we report the partial cloning and characterization of fungus C. cinereus homolog of yeast RAD4 gene. Southern blot analysis confirmed that C. cinereus contains the sequence homologous DNA to RAD4 gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from C. cinereus cells was hybridized with the 1.2 kb PvuII DNA fragment of the S. cerevisiae RAD4 gene, a 2.5 kb of transcript was detected. The level of the transcript did not increase upon UV-irradiation, suggesting that the RAD4 homologous gene in C. cinereus is not UV-inducible.

  • PDF

Characterization of Ethanol Fermentation Using Alginate Immobilized Thermotolerant Yeast Cells

  • Sohn, Ho-Yong;Park, Wan;Jin, Ingnyol;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.62-67
    • /
    • 1997
  • To enhance the hyperproductive and low energy-consuming ethanol fermentation rate, the thermotolerant yeast S. cerevisiae RA-74-2 cells were immobilized. An efficient immobilization condition was proved to be $1.5{\%}$ (w/v) alginate solution, neutral pH and 20 h activation of beads. The fermentation characteristics and stability at various temperatures were examined as compared with free S. cerevisiae RA-74-2 cells. The immobilized cells had excellent fermentation rate at the range of pH 3-7 at 30-$42^{\circ}C$ in 15-$20{\%}$ glucose media. When the seed volume was adjusted to 0.12 (v/v) (6ml bead/50 ml medium), $11{\%}$ (w/v) ethanol was produced during the first 34 hand $12.15{\%}$ (w/v) ethanol [$95{\%}$ (w/v) of theoretical yield] during the first 60 h in $25{\%}$ glucose medium. In repetitive fermentation using a 2 litre fermentor, 5.79-$7.27{\%}$ (w/v) ethanol [76-$95{\%}$ (w/v) of theoretical yield] was produced during the 40-55 h in $15{\%}$ glucose media. These data suggested the fact that alginate beads of thermotolerant S. cerevisiae RA-74-2 cells would contribute to economic and hyperproductive ethanol fermentation at high temperature.

  • PDF

Efficient Secretory Expression of Recombinant Endoxylanase from Bacillus sp. HY-20 in Saccharomyces cerevisiae (출아효모(Saccharomyces cerevisiae)에서 Bacillus sp. HY-20균주의 재조합 endoxylanase의 효율적 분비 발현)

  • Kim, Min-Ji;Kim, Bo-Hyun;Nam, Soo-Wan;Choi, Eui-Sung;Shin, Dong-Ha;Cho, Han-Young;Son, Kwang-Hee;Park, Ho-Yong;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.863-868
    • /
    • 2013
  • The XylP gene, which encodes endoxylanase in Bacillus sp. HY-20, was subcloned, and two expression plasmids, pG-xylP and pGMF-xylP were constructed. These plasmids, which contain different signal sequences, XylP s.s and $MF{\alpha}_{opt}$ s.s, respectively, for the secretory expression of endoxylanase, were transformed into Saccharomyces cerevisiae SEY2102 and FY833, respectively. The recombinant endoxylanases were successfully expressed, with a total activity range of 23.7-70.1 unit/ml according to the expression system and host strain. The endoxylanase activity in SEY2102/pGMF-xylP reached a maximum of 88.1 unit/ml in baffled flask culture. Most of the recombinant endoxylanase was efficiently secreted in the extracellular fraction, and the $MF{\alpha}_{opt}$ s.s was more efficient for secreting endoxylanase in yeast than the XylP s.s. Therefore, the expression system developed in this study produces large extracellular amounts of endoxylanase using S. cerevisiae as the host strain, and it could be used in bioethanol production and industrial applications.

Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377 (산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가)

  • Kim, Il-Sup;Yun, Hae-Sun;Yang, Ji-Young;Lee, Oh-Seok;Park, Heui-Dong;Jin, Ing-Nyol;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • Oxidative stress is a consequence of an imbalance of the defense system against cellular damage generated by reactive oxygen species (ROSs) such as superoxide anions (menadione; MD). Most organisms have evolved a variety of defense systems to protect cells from adverse conditions. In order to evaluate stress tolerance against oxidative stress generating MD, comparative analyses of antioxidant capacity, or free radical scavenger ability, were performed between S. cerevisiae KNU5377 (KNU5377) and three wild-type S. cerevisiae strains. In a medium containing 0.4 mM MD, the KNU5377 strain showed higher cell viability and antioxidant ability, and contained higher levels of trehalose, superoxide dismutase, thioredoxin system, glucose-6-phosphate dehydrogenase, and some heat shock proteins. The KNU5377 strain also produced a lower level of oxidative stress biomarker than the other three yeast strains. These results indicate that S. cerevisiae KNU5377 has a higher level of tolerance to oxidative stress due to the increased expression of cell rescue proteins and molecules, thus alleviating cellular damage more efficiently than other S. cerevisiae strains.