Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.7.863

Efficient Secretory Expression of Recombinant Endoxylanase from Bacillus sp. HY-20 in Saccharomyces cerevisiae  

Kim, Min-Ji (Department of Biotechnology and Bioengineering, Dong-Eui University)
Kim, Bo-Hyun (Department of Biotechnology and Bioengineering, Dong-Eui University)
Nam, Soo-Wan (Department of Biotechnology and Bioengineering, Dong-Eui University)
Choi, Eui-Sung (Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Shin, Dong-Ha (Insect Biotech Co. Ltd.)
Cho, Han-Young (Industrial Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Son, Kwang-Hee (Industrial Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Ho-Yong (Industrial Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Yeon-Hee (Department of Biotechnology and Bioengineering, Dong-Eui University)
Publication Information
Journal of Life Science / v.23, no.7, 2013 , pp. 863-868 More about this Journal
Abstract
The XylP gene, which encodes endoxylanase in Bacillus sp. HY-20, was subcloned, and two expression plasmids, pG-xylP and pGMF-xylP were constructed. These plasmids, which contain different signal sequences, XylP s.s and $MF{\alpha}_{opt}$ s.s, respectively, for the secretory expression of endoxylanase, were transformed into Saccharomyces cerevisiae SEY2102 and FY833, respectively. The recombinant endoxylanases were successfully expressed, with a total activity range of 23.7-70.1 unit/ml according to the expression system and host strain. The endoxylanase activity in SEY2102/pGMF-xylP reached a maximum of 88.1 unit/ml in baffled flask culture. Most of the recombinant endoxylanase was efficiently secreted in the extracellular fraction, and the $MF{\alpha}_{opt}$ s.s was more efficient for secreting endoxylanase in yeast than the XylP s.s. Therefore, the expression system developed in this study produces large extracellular amounts of endoxylanase using S. cerevisiae as the host strain, and it could be used in bioethanol production and industrial applications.
Keywords
Endoxylanase; optimized $MF{\alpha}$ signal sequence ($MF{\alpha}_{opt}$ s.s); GAL promoter; secretory production; Saccharomyces cerevisiae;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Tachaapaikoon, C., Lee, Y. S., Ratanakhanokchai, K., Pinitglang, S., Kyu, K. L., Roh, M. S. and Lee, S. K. 2006. Purification and characterization of two endoxylanases from an alkaliphilic Bacillus halodurans C-1. J Microbiol Biotechnol 16, 613-618.   과학기술학회마을
2 Walsh, D. J., Gibbs, M. D. and Bergquist, P. L. 1998. Expression and secretion of a xylanase from the extreme thermophile, thermotoga strain FjSS3B.1, in Kluyveromyces lactis. Extremophiles 2, 9-14.   DOI   ScienceOn
3 Wamalwa, B. M., Zhao, G., Sakka, M., Shiundu, P. M., Kimura, T. and Sakka, K. 2007. High-level heterologous expression of Bacillus halodurans putative xylanase xyn11a (BH0899) in Kluyveromyces lactis. Biosci Biotechnol Biochem 71, 688-693.   DOI   ScienceOn
4 Whang, J., Ahn, J., Chun, C. S., Son, Y. J., Lee, H. and Choi, E. S. 2009. Efficient, galactose-free production of Candida antarctica lipase B by GAL10 promoter in Δgal80 mutant of Saccharomyces cerevisiae. Proc Biochem 44, 1190-1192.   DOI   ScienceOn
5 Winston, F., Dollard, C. and Ricupero-Hovasse, S. L. 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11, 53-55.   DOI   ScienceOn
6 Wong, K. K, Tan, L. U. and Saddler, J. N. 1988. Multiplicity of $\beta$-1,4-xylanase in microorganism: function and application. Microbiol Rev 52, 305-317.
7 Yin, T., Miao, L. L., Guan, F. F., Wang, G. L., Peng, Q., Li, B. X., Guan, G. H. and Li, Y. 2010. Optimized medium improves expression and secretion of extremely thermostable bacterial xylanase, XynB, in Kluyveromyces lactis. J Microbiol Biotechnol 20, 1471-1480.   과학기술학회마을   DOI   ScienceOn
8 Yoshida, S., Ono, T., Matsuo, N. and Kusakabe, I. 1994. Structure of hardwood xylan and specificity of Streptomyces b-xylanase toward the xylan. Biosci Biotechnol Biochem 58, 2068-2070.   DOI   ScienceOn
9 Zhang, G. M., Huang, J., Huang, G. R., Ma, L. X. and Zhang, X. E. 2007. Molecular cloning and heterologous expression of a new xylanase gene from Plectosphaerella cucumerina. Appl Microbiol Biotechnol 74, 339-346.   DOI   ScienceOn
10 Heo, S. Y., Kim, J. K., Kim, Y. M. and Nam, S. W. 2004. Xylan hydrolysis by treatment with endoxylanase and $\beta$ -xylosidase expressed in yeast. J Microbiol Biotechnol 14, 171-177.   과학기술학회마을
11 Huy, N. D., Kim, S. W. and Park, S. M. 2011. Heterologous expression of endo-1,4-beta-xylanaseC from Phanerochaete chrysosporium in Pichia pastoris. J Biosci Bioeng 111, 654-657.   DOI   ScienceOn
12 Latchinian-Sadek, L. and Thomas, D. Y. 1993. Expression, purification, and characterization of the yeast KEX1 gene product, a polypeptide precursor processing carboxypeptidase. J Biol Chem 268, 534-540.
13 Khandeparker, R. and Numan, M. T. 2008. Bifunctional xylanases and their potential use in biotechnology. J Ind Microbiol Biotechnol 35, 635-644.   DOI   ScienceOn
14 La Grange, D. C., Pretorius, I. S. and van Zyl, W. H. 1996. Expression of a Trichoderma reesei b-xylanase gene (XYN2) in Saccharomyces cerevisiae. Appl Environ Microbiol 62, 1036-1044.
15 La Grange, D. C., Pretorius, I. S., Claeyssens, M. and van Zyl, W. H. 2001. Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger $\beta$-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 67, 5512-5519.   DOI   ScienceOn
16 Lee, J. H., Lim, M. Y., Kim, M. J., Heo, S. Y., Seo, J. H., Kim, Y. H. and Nam, S. W. 2007. Constitutive coexpression of Bacillus endoxylanase and Trichoderma endoglucanase Genes in Saccharomyces cerevisiae. J Microbiol Biotechnol 17, 2076-2080.   과학기술학회마을
17 Lee, L. H., Kim, D. Y., Han, M. K., Oh, H. W., Ham, S. J., Park, D. S., Bae, K. S., Sok, D. E., Shin, D. H., Son, K. H. and Park, H. Y. 2009. Characterization of an extracellular xylanase from Bacillus sp. HY-20, a bacterium in the gut of Apis mellifera. Korean J Microbiol 45, 332-338.   과학기술학회마을
18 Liu, M. Q. and Liu, G. F. 2008. Expression of recombinant Bacillus licheniformis xylanase A in Pichia pastoris and xylooligosaccharides released from xylans by it. Protein Expr Purif 57, 101-107.   DOI   ScienceOn
19 Liu, M. Q., Weng, X. Y. and Sun, J. Y. 2006. Expression of recombinant Aspergillus niger xylanase A in Pichia pastoris and its action on xylan. Protein Expr Purif 48, 292-299.   DOI   ScienceOn
20 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31, 426-428.   DOI
21 Nuyens, F., van Zyl, W. H., Iserentant, D., Verachtert, H. and Michiels, C. 2001. Heterologous expression of the Bacillus pumilus endo-b-xylanase (xynA) gene in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 56, 431-434.   DOI   ScienceOn
22 Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A. and Amorim, D. S. 2005. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67, 577-591.   DOI   ScienceOn
23 Subramaniyan, S. and Prema, P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22, 33-64.   DOI   ScienceOn
24 Beg, Q. K., Kapoor, M., Mahajan, L. and Hoondal, G. S. 2001. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56, 326-338.   DOI
25 Chen, H. G., Yan, X., Liu, X. Y., Wang, M. D., Huang, H. M., Jia, X. C. and Wang, J. A. 2006. Purification and characterization of novel bifunctional xylanase, XynIII, isolated from Aspergillus niger A-25. J Microbiol Biotechnol 16, 1132-1138.
26 Chomczynski, P. and Sacchi, N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenolchloroform extraction. Anal Biochem 162, 156-159.
27 Emr, S. D., Schekman, R., Flessel, M. C. and Thorner, J. 1983. An MF alpha 1-SUC2 (alpha-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc Natl Acad Sci USA 80, 7080-7084.   DOI   ScienceOn
28 Gietz, R. D., Schiestl, R. H., Willems, A. R. and Woods, R. A. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355-360.   DOI   ScienceOn
29 Gorgens, J. F., Planas, J., van Zyl, W. H., Knoetze, J. H. and Hahn-Hagerdal, B. 2004. Comparison of three expression systems for heterologous xylanase production by S. cerevisiae in defined medium. Yeast 21, 1205-1217.   DOI   ScienceOn