• 제목/요약/키워드: S-doping

검색결과 694건 처리시간 0.028초

$^{11}B$ Quadrupole Interaction Studies of Boron-doped Graphite Electrode for Lithium Secondary Battery

  • Lee, Youngil;Han, Duk-Young;Lee, Donghoon;Woo, Ae-Ja;Lee, Sam-Hyeon;Kim, Kyung-Han;Lee, Man-Ho
    • 한국자기공명학회논문지
    • /
    • 제3권2호
    • /
    • pp.90-99
    • /
    • 1999
  • Doping of boron atoms in graphite has been well known method to increase the discharge capacity as the negative electrode material for lithium secondary battery. Herein, the boron-doped graphites are prepared by mixing 1, 2.5, 5, and 7 wt. % of boron carbide in carbon during the graphitizing process. The structural states of boron in boron-doped graphites are investigated by solid-state 11B NMR spectroscopy. The resonance lines for substitutional boron atoms are identified as the second order quadrupolar powder pattern with the quardrupole coupling constant, QCC = 3.36(2) MHz. The quantitative analysis of 11B NMR spectra with boron-doped graphite has also been performed via simulation.

  • PDF

바리스터의 물성에 미치는 열처리 효과 (Effect of Heat Treatment on Properties of Varistors)

  • 홍경진;민용기;오수홍;조재철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.955-958
    • /
    • 2001
  • The structure characteristics of varistor of Zn oxide to depend on the breakdown voltage has been investigated to annealing condition by additive material of Sb$_2$O$_3$ system. The breakdown voltage that has not doping Sb$_2$O$_3$ was 235[V]. ZnO varistors was shown ohmic properties when it's applied voltage was below critical voltage. It was shown non-ohmic properties over critical voltage, because current was increased with decreasing resistance. High voltage ZnO varistors had high breakdown voltage, but it had bad electrical stability with various surge. Sb$_2$O$_3$was increased non-linear coefficient in ZnO varistors grain boundary.

  • PDF

Polypyrrole-Glucose Oxidase 효소전극의 배위자 크기에 따른 전기 화학적 특성 (Electrochemical Properties of Polypyrrole-Glucose Oxidase Enzyme Electrode Depending on Dopant Size)

  • 김현철;구할본;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.745-748
    • /
    • 2001
  • We synthesized polypyrrole (PPy) by electrolysis of the pyrrole monomer solution containing support electrolyte KCl and/or p-toluene sulfonic acid sodium salt (p-TS). The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. In the case of using electrolyte p-TS, the redox potential was about -0.3 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for using electrolyte KCl. It is considered as the backbone forms a queue effectively by doping p-T S. Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a hint of betterment of mass transport. PPy doped with p-TS has improved in mass transport, or diffusion. That is because the PPy doped with p-TS has a good orientation, and is more porous than PPy with KCl.

  • PDF

Dye Sensitized Solar Cell using Polymer Electrolytes based on Poly(ethylene oxide) with an Ionic Liquid

  • Singh Pramod K.;Kim, Ki-Il;Rhee Hee-Woo
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.273-273
    • /
    • 2006
  • The encapsulation of volatile organic electrolytes is a major challenge in practical applications of the DSSC. Ionic liquid (IL) within polymer electrolytes is an attractive candidate for replacement. Here we used a low viscosity ionic liquid 1-ethyl 3-methylimidazolium thiocyanate in order to modify ionic conductivity (${\sigma}$) of polymer electrolyte ($PEO:Kl/l_{2}$) and hence DSSC efficiency. The doping of IL enhanced ${\sigma}$ and attained maximum (${\sigma}=7.62{\times}10^{-4}S/cm$) at 80 wt% of IL concentration. Beyond this it was harder to get stable films. XRD confirmed that the intensity of the sharp PEO crystalline peaks decreased when IL was added. The DSC studies confirmed the reduction in crystallinity by adding ionic liquid.The efficiency of solar cell using aforesaid material was 0.6 % at 1 sun irradiation.

  • PDF

Quality evaluation of diamond wire-sawn gallium-doped silicon wafers

  • Lee, Kyoung Hee
    • 한국결정성장학회지
    • /
    • 제23권3호
    • /
    • pp.119-123
    • /
    • 2013
  • Most of the world's solar cells in photovoltaic industry are currently fabricated using crystalline silicon. Czochralski-grown silicon crystals are more expensive than multicrystalline silicon crystals. The future of solar-grade Czochralski-grown silicon crystals crucially depends on whether it is usable for the mass-production of high-efficiency solar cells or not. It is generally believed that the main obstacle for making solar-grade Czochralski-grown silicon crystals a perfect high-efficiency solar cell material is presently light-induced degradation problem. In this work, the substitution of boron with gallium in p-type silicon single crystal is studied as an alternative to reduce the extent of lifetime degradation. The diamond-wire sawing technology is employed to slice the silicon ingot. In this paper, the quality of the diamond wire-sawn gallium-doped silicon wafers is studied from the chemical, electrical and structural points of view. It is found that the characteristic of gallium-doped silicon wafers including texturing behavior and surface metallic impurities are same as that of conventional boron-doped Czochralski crystals.

Active Matrix OLED Displays with High Stability and Luminous Efficiency by New Doping Method

  • Shibata, Kenichi;Hamada, Yuji;Kanno, Hiroshi;Takahashi, Hisakazu;Mameno, Kazunobu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.4-6
    • /
    • 2003
  • We have developed the active matrix OLED displays with a high efficiency red emission material which uses an emitting assist (EA) dopant system. The EA dopant (rubrene) did not itself emit but assisted the energy transfer from the host ($Alq_s$) to the red emitting dopant(DCM2). A stable red emission (chromaticity coordinates: x=0.64, y=0.36) was obtained in this cell within the luminance range of 100 - 4000 $cd/m^2$ By using EA dopant system, we can realize the reduction of the power consumption of the OLED display..

  • PDF

P형 우물 영역에 따른 4H-SiC DMOSFETs의 스위칭 특성 분석 (Effect of P-Base Region on the Transient Characteristics of 4H-SiC DMOSFETs)

  • 강민석;안정준;성범식;정지환;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.352-352
    • /
    • 2010
  • Silicon Carbide (SiC) power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics. In this paper, we report the effect of the P-base doping concentration ($N_{PBASE}$) on the transient characteristics of 4H-SiC DMOSFETs. By reducing $N_{PBASE}$, switching time also decreases, primarily due to the lowered channel resistance. It is found that improvement of switching speed in 4H-SiC DMOSFETs is essential to reduce the and channel resistance. Therefore, accurate modeling of the operating conditions are essential for the optimization of superior switching performance.

  • PDF

청색형광재료와 황색인광 재료를 이용한 OLEDs의 전기 및 광학적 특성 (Electrical and Optical Properties of Organic Light Emitting Devices Using Blue Fluorescent and Orange Phosphorescent Materials)

  • 서유석;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.155-155
    • /
    • 2010
  • We have investigated organic light-emitting devices by doping phosphorescent orange and fluorescent blue emitters into the separate layers of single host. The electroluminescence spectra and current efficiency were strongly dependent on the location of each doped layers. The luminance-voltage (L-V) characteristics of the device2 (ITO/Hole Transport Layer/Orange Phosphorescent emissive layer/Blue Fluorescent emissive layer/Electron Transport Layer/liF/Al) showed the maximum current efficiency of 19.5 cd/A.

  • PDF

1,700 V급 Static Induction Thyristor 소자 최적화 (Optimization of 1,700 V Static Induction Thyristor Devices)

  • 문경숙;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제30권7호
    • /
    • pp.423-426
    • /
    • 2017
  • The designing approaches with consideration offabrication process technologies for high-frequency, high-powered, silicon-based static induction thyristors (SITH) are presented. The effects of doping concentration and thickness on the I-V characteristics and power performance of the devices are discussed. The dependence of SITH switching performances on material, geometric structure, and technological parameters isexamined by using two-dimensional simulations. Thick-epitaxy technology is found to be one of the most critical steps in realizing the proposed structure and switching times, $t_{off}$, of SITH, which may be reduced to below ${\sim}0.26{\mu}s$ for the proposed 1,700 V SITH devicesafter optimization.

GaN 계열 양자점 소자 연구 동향

  • 김현진;윤의준
    • 전자공학회지
    • /
    • 제30권5호
    • /
    • pp.53-53
    • /
    • 2003
  • 지금까지 GaN 계열 물질의 양자점 소자 관련 연구 동향을 양자점 구현 방식을 중점으로 하여 살펴보았다. GaN 계열 물질의 양자점을 구현하는 방법은 S-K 성장모드를 이용한 자발형성 양자점 구현법, anti-surfactaant를 이용하는 방법, selective epitaxy를 이용한 양자점 구현법 등이 시도되고 있다. 현재 GaN 계열 물질의 양자점 소자 연구는 아직 충분한 연구가 이루어지짖 않은 관계로 optical pumping을 통한 LD lasing 구현에 머무르고 있는 실정이다. 후 소자로의 응용을 위해서는 여러 가지 문제점이 해결되어야 한다. 우선 우수한 결정성을 지니는 양자점의 성장이 이루어져야 한다. 이외에도 각 구현 방법 별로 GaN 및 AlGaN 양자점 성장용 기판으로 많이 사용되는 높은 조성의 AlGaN 및 AlN의 doping 기술 개발, patterning 기술의 개선을 통한 미세 공정 개발 등의 여러 가지 과제들이 남아 있다. 그러나, 양자점이 지진 우수한 특성과 이를 이용한 높은 응용 가능성을 고려할 때 GaN 계열 양자점 소자의 전망은 밝다고 할 수 있다.