• Title/Summary/Keyword: S-coordinates

Search Result 866, Processing Time 0.029 seconds

Accuracy of Precision Ground Coordinates Determination Using Inverse RPC in KOMPSAT Satellite Data (다목적실용위성(KOMPSAT)의 Inverse RPC 해석을 통한 정밀지상좌표 결정 정확도)

  • Seo, DooChun;Jung, JaeHun;Hong, KiByung
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.99-107
    • /
    • 2014
  • There are two types of Physical Model and RFM (Rational Function Model) is to determinate ground coordinates using KOMPSAT-2 and KOMPSAT-3 satellite data. Generally, RPCs(Rational Polynomial Coefficients) based on RFM is provided for users. This RPCs is to compute the ground coordinates to the image coordinates. If users produce ortho-image with provided RPCs is useful, directly compute the ground coordinates corresponding to image coordinates and check location accuracy etc. are difficult. In this study, a basic algorithm of inverse RPCs that calculates the image coordinates to ground coordinates, compute based on provided RPCs and evaluation of determinated ground coordinates using developed inverse RPCs were proposed.

Young Children's Ability to Use Spatial Coordinates and to Represent Spatial Locations (유아의 좌표지각능력과 위치표상능력과의 관계 연구)

  • Kim, Ji Hyun;Lee, Jeongwuk
    • Korean Journal of Child Studies
    • /
    • v.25 no.6
    • /
    • pp.1-13
    • /
    • 2004
  • The purposes of this study were to investigate whether there were differences in the young children's abilities to use spatial coordinates and to represent spatial locations by children's age and sex, and to examine the relationship between these two abilities. It also explored whether the young children could use coordinates as the frames of reference for representing spatial locations. Seventy 5- and 6-year-old children from two kindergartens in Seoul and in Bucheon participated in this study. Results indicated that there were statistically significant differences between age groups on the children's ability to use spatial coordinates and to represent spatial locations. However, there were no significant differences between boys and girls on these two abilities. A positive correlation was found between theses two abilities of using spatial coordinates and representing spatial locations. Most of the young children used landmarks as the frames of reference to represent spatial locations while some of the children were partially able to use spatial coordinates. Twenty percent of 6-year-old children were fully able to use spatial coordinates as the frames of reference to represent spatial locations.

  • PDF

FURTHER ON PETROVIĆ'S TYPES INEQUALITIES

  • IQBAL, WASIM;REHMAN, ATIQ UR;FARID, GHULAM;RATHOUR, LAXMI;SHARMA, M.K.;MISHRA, VISHNU NARAYAN
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1021-1034
    • /
    • 2022
  • In this article, authors derived Petrović's type inequalities for a class of functions, namely, called exponentially h-convex functions. Also, the associated results for coordinates has been derived by defining exponentially h-convex functions on coordinates.

S-Octree: An Extension to Spherical Coordinates

  • Park, Tae-Jung;Lee, Sung-Ho;Kim, Chang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1748-1759
    • /
    • 2010
  • We extend the octree subdivision process from Cartesian coordinates to spherical coordinates to develop more efficient space-partitioning structure for surface models. As an application of the proposed structure, we apply the octree subdivision in spherical coordinates ("S-Octree") to geometry compression in progressive mesh coding. Most previous researches on geometry-driven progressive mesh compression are devoted to improve predictability of geometry information. Unlike this, we focus on the efficient information storage for the space-partitioning structure. By eliminating void space at initial stage and aligning the R axis for the important components in geometry information, the S-Octree improves the efficiency in geometry information coding. Several meshes are tested in the progressive mesh coding based on the S-Octree and the results for performance parameters are presented.

The Effects of Age and Information Processing Style on Abilities of Young Children to Understand Spatial Coordinates (유아의 정보처리양식과 연령이 공간좌표인식능력에 미치는 영향)

  • Oh, Mee-Hyeong
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.9
    • /
    • pp.125-135
    • /
    • 2008
  • The purpose of this study was to examine the effects of young children's age and information processing style in understanding spatial coordinates. For sampling the subjects of this study, Korean version K-ABC Intelligence Test(Moon, Soo-Back, 1997)was conducted with 165 children aged 5-6 who were attending I and G kindergarten in D city. From this pool 30 children who possessed sequential processing style and 30 children who possessed simultaneous processing style were sampled. In order to analyze the understanding of spatial coordinates, a test tool was formulated according to methodology of Blades & Spencer(1989) which was modified. Acquired data was subjected to descriptive and comparative statistical analysis. The following conclusions were arrived at: Firstly, there was significant difference between 5-year-olds and 6-year-olds in understanding spatial coordinates. The 6-year-old group got statistically higher grades than the 5-year-old group in locating a point on the coordinate plane and reading the coordinate numbers. Secondly, there was significant difference between children's information processing style in understanding spatial coordinate. Children with high simultaneous-low sequential processing showed higher performance in locating a point on the coordinate plane and reading coordinate numbers than children with high sequential-low simultaneous processing. Thirdly, after verifying statistical significance of interactivity between young children's age and children's processing strength, there was significant interactive effects in both tasks.

Replaceable battery electric car's battery location coordinates image processing techniques for obtaining verification (배터리 교체형 전기자동차의 배터리 위치좌표 획득을 위한 영상처리기술 검증)

  • Kim, Eung-Pil;Jung, Won-Jae;Kim, Jeoung-Youn;Park, Jun-Seok;Kim, Tae-Hee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.2
    • /
    • pp.52-57
    • /
    • 2012
  • In this paper describe configuration about QCM system for image processing device. It presents that QCM's image processing board video from the camera recognized by the PLC's battery removable exact location coordinates to the robot image processing technology to deliver. In addition, QCM video image processing technology for improved data reliability is described. In this paper define the landmarks of battery for obtaining the location coordinates and verify battery the location coordinates acquisition process from field tests of the QCM/QTPE-BUS Battery Exchange System.

  • PDF

ON REGULAR POLYGONS AND REGULAR SOLIDS HAVING INTEGER COORDINATES FOR THEIR VERTICES

  • Jang, Changrim
    • East Asian mathematical journal
    • /
    • v.30 no.3
    • /
    • pp.303-310
    • /
    • 2014
  • We study the existence of regular polygons and regular solids whose vertices have integer coordinates in the three dimensional space and study side lengths of such squares, cubes and tetrahedra. We show that except for equilateral triangles, squares and regular hexagons there is no regular polygon whose vertices have integer coordinates. By using this, we show that there is no regular icosahedron and no regular dodecahedron whose vertices have integer coordinates. We characterize side lengths of such squares and cubes. In addition to these results, we prove Ionascu's result [4, Theorem2.2] that every equilateral triangle of side length $\sqrt{2}m$ for a positive integer m whose vertices have integer coordinate can be a face of a regular tetrahedron with vertices having integer coordinates in a different way.

A Study on the Pattern Matching Algorithm of 3D Coordinates for Quality Control in Ship Blocks (선박블록의 정도관리를 위한 3차원 좌표의 패턴매칭 알고리즘에 대한 연구)

  • Lee, Ho Cheol;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.933-939
    • /
    • 2012
  • In general, the three-dimensional(3D) coordinates of the manufactured ship blocks are measured using the laser measuring equipment by ship engineers. But, many deflections between the measured coordinates in manufactured step and the designed coordinates in the design step are occurred because of the measuring process of ship blocks manually. Thus, the ship engineer should conform the consistency between the measured coordinates and the designed coordinates step by step, and it largely causes the loss of manpower and time. In this paper, the automated pattern matching algorithm of 3D coordinates for quality control in ship blocks is suggested in order to solve this problem, and the performance of the algorithm is analyzed using the 3D coordinates simulation software developed by our research laboratory. The coordinates matching rate of the measured coordinates in the single/multi ship block(s) is about 90.2% under the tolerated distance error range is 20~25cm.