
J. Appl. Math. & Informatics Vol. 40(2022), No. 5 - 6, pp. 1021 - 1034
https://doi.org/10.14317/jami.2022.1021

FURTHER ON PETROVIĆ’S TYPES INEQUALITIES†

WASIM IQBAL, ATIQ UR REHMAN, GHULAM FARID, LAXMI RATHOUR, M.K.
SHARMA AND VISHNU NARAYAN MISHRA∗

Abstract. In this article, authors derived Petrović’s type inequalities for a
class of functions, namely, called exponentially h−convex functions. Also,
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1. Introduction and preliminaries

Convex functions are utilized to investigate a diverse range of problems that
emerge in the pure and applied sciences. This theory offers us with a natural
and broad framework for investigating a wide range of unconnected issues. See
[2, 3, 4, 5, 8, 12, 13, 15] for further information on convex functions and their
variant forms, including contemporary applications, generalizations, and other
topics.

S. Varošanec [26] gave the definition of h−convex function and derived several
results by imposing the conditions on h, which seemed like a nice generalization of
the convex functions. Bernstein [5] introduced exponentially convex functions,
which have applications in covariance analysis. By imposing the requirement
of r−convex functions, Avriel [4] studied this topic. Noor and Noor [13] were
motivated and inspired by these applications to analyse exponentially convex
functions and investigate their basic characterizations. In information theory,
optimization theory, and statistical theory, Pal and Wong [15] offered fruitful
ground for exponentially convex functions.
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The well-known Petrović’s inequality [16] is one of the most significant in-
equalities. Several authors have discovered Petrović’s type inequality, see [11,
16, 17, 18, 19, 20] and references therein.

In this paper, we will denote the class of exponentially h−convex functions by
ESX(h, I), where I is an interval in R and the class of exponentially h−convex
functions on coordinates by ESX(h,∆).

Rashid et al. [24] introduced exponentially h−convex function as follows:

Definition 1.1. Let h : J → R be a non-negative function such that (0, 1) ⊆ J.
A function ϕ : Ω ⊆ R → R belongs to ESX(h, I), if

eϕ(τς+(1−τ)ξ) ≤ h(τ)eϕ(ς) + h(1− τ)eϕ(ξ), ∀ς, ξ ∈ Ω, τ ∈ (0, 1). (1)

Remark 1.1.

Particular value of h in inequality (1) gives us the following results:
1. Take h(α) = α gives the definition of exponentially convex functions.
2. Take h(α) = αs and α ∈ (0, 1) gives the definition of exponentially s−convex

functions in the second sense.
3. Take h(α) = 1

α and α ∈ (0, 1) gives the definition of exponentially Godunova
Levin functions.

4. Take h(α) = 1
αs and α ∈ (0, 1) gives the definition of exponentially s−Godunova

Levin functions of second sense.
The concept of convex functions on coordinates was given by Dragomir [8].

Following the idea of Dragommir, Alomari et al. [2] introduced h−convex on
coordinates as follows:

Definition 1.2. Let A = [x, y], with x < y and B = [ς, ξ] with ς < ξ be intervals
in R. Also, let ϕ : A×B → R be a mapping. Define partial mappings as

ϕξ : A→ R defined by ϕξ(x) = ϕ(x, ξ) (2)
and

ϕς : B → R defined by ϕς(y) = ϕ(ς, y). (3)
If the mappings defined in (2) and (3) are h−convex on A and B respectively,
for all ξ ∈ B and ς ∈ A. Then ϕ is h−convex on coordinates.

Let us consider the bidimensional interval ∆ = A × B in R2. We will keep
the notation ∆ in the whole paper.

Definition 1.3. Let h : J → R be a positive function such that (0, 1) ⊆ J. A
mapping ϕ : ∆ → R is h−convex in ∆, if

ϕ(τς + (1− τ)η, τξ + (1− τ)ζ) ≤ h(τ)ϕ(ς, ξ) + h(1− τ)ϕ(η, ζ), (4)
∀(ς, ξ), (η, ζ) ∈ ∆, τ ∈ (0, 1).

Petrović [16] derived inequality for convex functions.
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Theorem 1.4. Let [0, d] ⊆ R be an interval, (ς1, ς2, ..., ςn) ∈ [0, d]n and
(w1, w2, ..., wn) ∈ R+

n such that
n∑
κ=1

wκςκ ∈ [0, d] and
n∑
κ=1

wκςκ ≥ ςκ for each κ = 1, ..., n. (5)

Let ϕ be the convex function on [0, d], then we have
n∑
κ=1

wκϕ(ςκ) ≤ ϕ

(
n∑
κ=1

wκςκ

)
+

(
n∑
κ=1

wκ − 1

)
ϕ(0). (6)

The next two results has been proved by W. Iqbal et al. [11].

Theorem 1.5. Let [0, d] ⊆ R be an interval, (ς1, ς2, ..., ςn) ∈ [0, d]n and
(w1, w2, ..., wn) ∈ R+

n such that (5) hold.
Let a function ϕ ∈ ESX (h, [0,∞)) , then

n∑
κ=1

wκe
ϕ(ςκ) ≤ e

ϕ

(
n∑
κ=1

wκςκ

)
+

(
n∑
κ=1

wκ − 1

)
eϕ(0). (7)

Theorem 1.6. Let [0, b], [0, d] ⊆ R be intervals, (ς1, ς2, ..., ςn) ∈ [0, d]n,
(ξ1, ξ2, ..., ξn) ∈ [0, b]n and (s1, s2, ..., sn), (w1, w2, ..., wn) ∈ R+

n, such that
n∑
κ=1

wκςκ ∈ [0, d), 0 ̸=
n∑
κ=1

wκςκ ≥ ςκ, for each κ = 1, 2, ..., n (8)

and
n∑
r=1

qrξr ∈ [0, b), 0 ̸=
n∑
r=1

qrξr ≥ ξr, for each r = 1, 2, ..., n. (9)

Let a function ϕ ∈ ESX
(
h, [0,∞)2

)
, then

n∑
κ=1

n∑
r=1

wκqre
ϕ(ςκ,ξr) ≤

{
e
ϕ

(
n∑
κ=1

wκςκ,
n∑
r=1

qrξr

)
+

(
n∑
r=1

qr − 1

)
e
ϕ

(
n∑
κ=1

wκςκ,0

)}

+

(
n∑
κ=1

wκ − 1

){
e
f

(
0,

n∑
r=1

qrξr

)
+

(
n∑
r=1

qr − 1

)
eϕ(0,0)

}
.

(10)

The main purpose of this paper is to introduce a new concept of exponentially
h−convex functions on coordinates. We derive Petrović’s type inequalities for
exponentially h−convex and exponentially h−convex functions on coordinates.

2. Main results

Here we give a lemma, which has important role in proving our results.
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Lemma 2.1. Let [0, d] ⊆ R be an interval, (ς1, ς2, ..., ςn) ∈ [0, d]n and
(w1, w2, ..., wn) ∈ R+

n such that (5) hold.
Also, let ϕ : [0,∞) → R be a function and h : J → R be a positive function.

Then

e
ϕ

(
n∑
κ=1

wκςκ

)
≥
h

(
n∑
κ=1

wκςκ − c

)
n∑
κ=1

wκh(ςκ − c)

n∑
κ=1

wκe
ϕ(ςκ), (11)

if eϕ(ς)

h(ς−c) is increasing for ς > c on [0, d].

Proof. Since eϕ(ς)

h(ς−c) is increasing on [0, d] and
∑n
κ=1 wκςκ ≥ ςκ > c for all κ =

1, ..., n, we have

e
ϕ

(
n∑
κ=1

wκςκ

)

h

(
n∑
κ=1

wκςκ − c

) ≥ eϕ(ςκ)

h(ςκ − c)
.

This gives

h(ςκ − c)e
ϕ

(
n∑
κ=1

wκςκ

)
≥ h

(
n∑
κ=1

wκςκ − c

)
eϕ(ςκ).

Multiplying above inequality by
n∑
κ=1

wκ on both sides, we have

n∑
κ=1

wκh(ςκ − c)e
ϕ

(
n∑
κ=1

wκςκ

)
≥ h

(
n∑
κ=1

wκςκ − c

)
n∑
r=1

wκe
ϕ(ςκ),

from which one can deduce (11). □

Next two theorems are the generalization of Petrović’s type inequality for
exponentially h−convex functions.

Theorem 2.2. Let [0, d] ⊆ R be an interval, (ς1, ς2, ..., ςn) ∈ [0, d]n and
(w1, w2, ..., wn) ∈ R+

n such that (5) hold. Also, let h : J → R+ be a supermul-
tiplicative function such that

h(τ) + h(1− τ) ≤ 1, ∀τ ∈ (0, 1). (12)

Also, let ϕ ∈ ESX (h, [0,∞)) , then
n∑
κ=1

wκe
ϕ(ςκ) ≤ Ae

ϕ

(
n∑
κ=1

wκςκ

)
+

(
n∑
κ=1

wκ −A

)
eϕ(c) , (13)
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where

A =

n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

) .
Proof. Let ϕ ∈ ESX (h, [0,∞)) and

Ψ(ς) =
eϕ(ς) − eϕ(c)

h(ς − c)
.

Let ξ > ς > c and ς = τξ + (1− τ)c, where τ ∈ (0, 1). Then

Ψ(ς) =
eϕ(τξ+(1−τ)c) − eϕ(c)

h(τξ + (1− τ)c− c)

≤ h(τ)eϕ(ξ) + h(1− τ)eϕ(c) − eϕ(c)

h(τ(ξ − c))
.

As h is supermultiplicative, so we have

Ψ(ς) ≤
h(τ)eϕ(ξ) + h(1− τ)eϕ(c) − eϕ(c)

h(τ)h(ξ − c)
.

Since h(1− τ)− 1 ≤ −h(τ), we have

Ψ(ς) ≤
h(τ)eϕ(ξ) − h(τ)eϕ(c)

h(τ)h(ξ − c)
.

This gives

Ψ(ς) ≤
eϕ(ξ) − eϕ(c)

h(ξ − c)
= Ψ(ξ),

which shows that Ψ(ς) is increasing on [0, d].

As we have shown that, eϕ(ξ)−eϕ(c)h(ς−c) is increasing for ς > c, when ϕ ∈ ESX (h, [0,∞)) .

Substituting eϕ(ς) by eϕ(ς) − eϕ(c) in Lemma 2.1, one has

e
ϕ

(
n∑
κ=1

wκςκ

)
− eϕ(c) ≥

h

(
n∑
κ=1

wκςκ − c

)
n∑
κ=1

wκh(ςκ − c)

n∑
κ=1

wκ

(
eϕ(ςκ) − eϕ(c)

)
.

This gives

e
ϕ

(
n∑
κ=1

wκςκ

)

≥
h

(
n∑
κ=1

wκςκ − c

)
n∑
κ=1

wκh(ςκ − c)

n∑
κ=1

wκe
ϕ(ςκ) −

h
(

n∑
κ=1

wκςκ − c

)
n∑
κ=1

wκh(ςκ − c)

n∑
κ=1

wκ − 1

 eϕ(c).
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This gives
n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

)eϕ( n∑
κ=1

wκςκ

)

≥
n∑
κ=1

wκe
ϕ(ςκ) −

 n∑
κ=1

wκ −

n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

)
eϕ(c).

From above inequality one can deduce (13). □

Theorem 2.3. Assume that the conditions given in Theorem 2.2 are valid. Then

n∑
κ=1

wκe
ϕ(ςκ) ≤

n∑
κ=1

wκh(ςκ)

h

(
n∑
κ=1

wκςκ

)eϕ( n∑
κ=1

wκςκ

)
+

 n∑
κ=1

wκ −

n∑
κ=1

wκh(ςκ)

h

(
n∑
κ=1

wκςκ

)
 eϕ(0) .

(14)

Proof. By taking c = 0 in (13), we get the required result. □

The next two results has been proved by W. Iqbal et al. [11].

Corollary 2.4. Assume that the conditions given in Theorem 1.5 are valid.
If ϕ : [0,∞) → R is an exponentially convex function, then

n∑
κ=1

wκe
ϕ(ςκ) ≤

n∑
κ=1

wκ(ςκ − c)

n∑
κ=1

wκςκ − c
e
ϕ

(
n∑
κ=1

wκςκ

)

+

 n∑
κ=1

wκ −

n∑
κ=1

wκ(ςκ − c)

n∑
κ=1

wκςκ − c

 eϕ(c).

(15)

Proof. Substituting h with an identity function in expression (13) gives us the
required result. □

Corollary 2.5. Assume that the conditions given in Theorem 1.5 are valid. If
ϕ : [0,∞)toR is an exponentially convex function, then

n∑
κ=1

wκe
ϕ(ςκ) ≤ e

ϕ

(
n∑
κ=1

wκςκ

)
+

(
n∑
κ=1

wκ − 1

)
eϕ(0). (16)

Proof. Substituting h with an identity function and c = 0, in (13) completes the
proof. □
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Here, we define the exponentially h−convex functions on coordinates, which
is mainly due to Dragomir [8], Alomari [2] and W. Iqbal et al. [11].
Definition 2.6. Let h : J → R be an arbitrary positive function such that
(0, 1) ⊆ J . A positive mapping ϕ ∈ ESX(h,∆), if the mappings defined in (2)
and (3) belongs to ESX(h,A) and ESX(h,B) respectively, for all ξ ∈ A and
ς ∈ B.
Definition 2.7. Let h : J → R be an arbitrary positive function with (0, 1) ⊆ J.
A positive mapping ϕ : ∆ → R belongs to ESX(h,∆), if

eϕ(τς+(1−τ)η,τξ+(1−τ)ζ) ≤ h(τ)eϕ(ς,ξ) + h(1− τ)eϕ(η,ζ), (17)
∀(ς, ξ), (η, ζ) ∈ ∆, τ ∈ (0, 1).

Remark 2.1. Particular value of h in Definition 2.6 gives us the following
results:
1. Take h(α) = α gives the definition of exponentially convex functions on co-

ordinates.
2. Take h(α) = αs and α ∈ (0, 1) gives the definition of exponentially s−convex

functions on coordinates in the second sense.
3. Take h(α) = 1

α and α ∈ (0, 1) gives the definition of exponentially Godunova
Levin functions on coordinates.

4. Take h(α) = 1
αs and α ∈ (0, 1) gives the definition of exponentially s−Godunova

Levin functions on coordinates of second sense.
Lemma 2.8. If ϕ ∈ ESX(h,∆), then ϕ ∈ ESX(h,∆) but the converse is not
true in general.
Proof. Let ϕ ∈ ESX(h,∆). Also, let ϕς : [0, d] → R be a partial mapping defined
as ϕς(ξ) := ϕ(ς, ξ). Then

eϕς(τξ+(1−τ)ζ) = eϕ(ς,τξ+(1−τ)ζ)

= eϕ(τς+(1−τ)η,τξ+(1−τ)ζ)

≤ h(τ)eϕ(ς,ξ) + h(1− τ)eϕ(η,ζ)

= h(τ)eϕς(ξ) + h(1− τ)eϕη(ζ), ∀τ ∈ [0, 1], ξ, ζ ∈ [0, d],

which shows that the partial mapping ϕς is exponentially h−convex.
Similarly, one can show that the partial mapping ϕξ is exponentially h−convex.

Now, consider the positive mapping ϕ : [0, 1]2 → [0,∞) given by eϕ(ς,ξ) = ςξ.
Definitely ϕ ∈ ESX(h,∆). But it is not exponentially h−convex on [0, 1]2.

Certainly, if (ς, 0), (0, ζ) ∈ [0, 1]2 and τ ∈ (0, 1), then
eϕ(τ(ς,0)+(1−τ)(0,ζ)) = eϕ(τς,(1−τ)ζ) = τ(1− τ)ςζ

and
h(τ)eϕ(ς,0) + h(1− τ)eϕ(0,ζ) = 0.
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Thus, ∀ τ ∈ (0, 1), ς, ζ ∈ (0, 1), we have

eϕ(τ(ς,0)+(1−τ)(0,ζ)) > h(τ)eϕ(ς,0) + h(1− τ)eϕ(0,ζ).

Hence ϕ is not exponentially h−convex for τ(1− τ)ςζ ̸= 0. □

In the next two theorems, we give the generalized Petrović’s type inequality
for exponentially h−convex functions on coordinates.

Theorem 2.9. Let [0, b], [0, d] ⊆ R be intervals, (ς1, ς2, ..., ςn) ∈ [0, d]n,
(ξ1, ξ2, ..., ξn) ∈ [0, b]n and (s1, s2, ..., sn), (w1, w2, ..., wn) ∈ R+

n, such that (8)
and (9) holds.

If h : J → R+ be a supermultiplicative function such that (12) hold and
ϕ ∈ ESX(h, [0,∞)2). Then

n∑
κ=1

n∑
r=1

wκqre
ϕ(ςκ,ξr) ≤ A

{
Be

ϕ

(
n∑
κ=1

wκςκ,
n∑
r=1

qrξr

)
(18)

+

(
n∑
r=1

qr −B

)
e
ϕ

(
n∑
κ=1

wκςκ,c

)}

+

(
n∑
κ=1

wκ −A

){
Be

f

(
c,

n∑
r=1

qrξr

)
+

(
n∑
r=1

qr −B

)
eϕ(c,c)

}
,

where

A =

n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

) and B =

n∑
r=1

qrh(ξr − c)

h

(
n∑
r=1

qrξr − c

) . (19)

Proof. Since ϕ ∈ ESX(h, [0,∞)2). Therefore, the partial mapping ϕξ defined in
(2) belongs to ϕ ∈ ESX (h, [0,∞)) . Using Theorem 2.2, we have

n∑
κ=1

wκe
ϕξ(ςκ)

≤

n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

)eϕξ( n∑
κ=1

wκςκ

)
+

 n∑
κ=1

wκ −

n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

)
 eϕξ(c).

This is equivalent to
n∑
κ=1

wκe
ϕ(ςκ,ξ)
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≤

n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

)eϕ( n∑
κ=1

wκςκ,ξ

)
+

 n∑
κ=1

wκ −

n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

)
 eϕ(c,ξ).

Replacing ξ = ξr, we have
n∑
κ=1

wκe
ϕ(ςκ,ξr)

≤

n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

)eϕ( n∑
κ=1

wκςκ,ξr

)
+

 n∑
κ=1

wκ −

n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

)
 eϕ(c,ξr).

Multiplying above inequality by
n∑
r=1

qr on both sides, we have

n∑
κ=1

n∑
r=1

wκqre
ϕ(ςκ,ξr) ≤

n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

) n∑
r=1

qre
ϕ

(
n∑
κ=1

wκςκ,ξr

)
+

 n∑
κ=1

wκ −

n∑
κ=1

wκh(ςκ − c)

h

(
n∑
κ=1

wκςκ − c

)
 n∑

r=1

qre
ϕ(c,ξr).

(20)

Again by Theoram 2.2, we have

n∑
r=1

qre
ϕ

(
n∑
κ=1

wκςκ,ξr

)
≤

n∑
r=1

qrh(ξr − c)

h

(
n∑
r=1

qrξr − c

)eϕ( n∑
κ=1

wκςκ,
n∑
r=1

qrξr

)
+ (21)

 n∑
r=1

qr −

n∑
r=1

qrh(ξr − c)

h

(
n∑
r=1

qrξr − c

)
 e

ϕ

(
n∑
κ=1

wκςκ,c

)

and

n∑
r=1

qre
f(c,ξr) ≤

n∑
r=1

qrh(ξr − c)

h

(
n∑
r=1

qrξr − c

)ef(c, n∑r=1
qrξr

)
(22)
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+

 n∑
r=1

qr −

n∑
r=1

qrh(ξr − c)

h

(
n∑
r=1

qrξr − c

)
 ef(c,c).

Using (21) and (22) in the inequality (20). Then using the notations given in
(19), one get the inequality (18). □

Theorem 2.10. Let the conditions given in Theorem 2.9 are valid. Then

n∑
κ=1

n∑
r=1

wκqre
ϕ(ςκ,ξr)

≤

n∑
κ=1

wκh(ςκ)

h

(
n∑
κ=1

wκςκ

)


n∑
r=1

qrh(ξr)

h

(
n∑
r=1

qrξr

)eϕ( n∑
κ=1

wκςκ,
n∑
r=1

qrξr

)

+

 n∑
r=1

qr −

n∑
r=1

qrh(ξr)

h

(
n∑
r=1

qrξr

)
 e

ϕ

(
n∑
κ=1

wκςκ,0

)
+

 n∑
κ=1

wκ −

n∑
κ=1

wκh(ςκ)

h

(
n∑
κ=1

wκςκ

)



n∑
r=1

qrh(ξr)

h

(
n∑
r=1

qrξr

)ef(0,
n∑
r=1

qrξr

)

+

 n∑
r=1

qr −

n∑
r=1

qrh(ξr)

h

(
n∑
r=1

qrξr

)
 eϕ(0,0)

 .

(23)

Proof. If we take c = 0 in (18), we get the required result. □

The next two results has been proved by W. Iqbal et al. [11].

Corollary 2.11. Assume that the conditions given in Theorem 2.9 are valid.
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If ϕ : [0,∞)2 → R is an exponentially convex function on coordinates, then
n∑
κ=1

n∑
r=1

wκqre
ϕ(ςκ,ξr)

≤ C

{
De

ϕ

(
n∑
κ=1

wκςκ,
n∑
r=1

qrξr

)
+

(
n∑
r=1

qr −D

)
e
ϕ

(
n∑
κ=1

wκςκ,c

)}

+

(
n∑
κ=1

wκ − C

){
De

f

(
c,

n∑
r=1

qrξr

)
+

(
n∑
r=1

qr −D

)
eϕ(c,c)

}
,

where

C =


n∑
κ=1

wκ(ςκ − c)

n∑
κ=1

wκςκ − c

 and D =


n∑
r=1

qr(ξr − c)

n∑
r=1

qrξr − c

 .

Proof. Substituting h with an identity function in (18) completes the proof. □

Corollary 2.12. Assume that the conditions given in Theorem 1.6 are valid. If
a function ϕ : ωtoR is exponentially convex function on coordinates, then

n∑
κ=1

n∑
r=1

wκqre
ϕ(ςκ,ξr)

≤

{
e
ϕ

(
n∑
κ=1

wκςκ,
n∑
r=1

qrξr

)
+

(
n∑
r=1

qr − 1

)
e
ϕ

(
n∑
κ=1

wκςκ,0

)}

+

(
n∑
κ=1

wκ − 1

){
e
f

(
0,

n∑
r=1

qrξr

)
+

(
n∑
r=1

qr − 1

)
eϕ(0,0)

}
.

(24)

Proof. Substituting h with an identity function and c = 0 in (18) completes the
proof. □

3. Conclusion

In this paper, we defined exponentially h−convex functions on coordinates
and derived the Petrović’s type inequalities for those functions. Also, we de-
fined the Petrović’s type inequalities for exponentially h−convex functions. It
is demonstrated that our results can be used to get previously known results as
special cases. The ideas and techniques presented in this study are designed to
inspire scholars working in functional analysis and statistical theory to identify
applications. This is an exciting new direction for future research.
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