• Title/Summary/Keyword: S-Parameter Measurement

Search Result 379, Processing Time 0.031 seconds

Estimation of Insulated-gate Bipolar Transistor Operating Temperature: Simulation and Experiment

  • Bahun, Ivan;Sunde, Viktor;Jakopovic, Zeljko
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.729-736
    • /
    • 2013
  • Knowledge of a power semiconductor's operating temperature is important in circuit design and converter control. Designing appropriate circuitry that does not affect regular circuit operation during virtual junction temperature measurement at actual operating conditions is a demanding task for engineers. The proposed method enables virtual junction temperature estimation with a dedicated modified gate driver circuit based on real-time measurement of a semiconductor's quasi-threshold voltage. A simulation was conducted before the circuit was designed to verify the concept and to determine the basic properties and potential drawbacks of the proposed method.

A Study on the Design of Sensory Nerve Conduction Velocity Measurement System (감각신경 전도속도 측정시스템 설계에 관한 연구)

  • Yoo, S.K.;Min, B.G.;Kim, J.W.;Kim, J.W.;Yoon, H.R.;Kim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.11
    • /
    • pp.89-92
    • /
    • 1992
  • The sensory nerve study is the important index to diagnosis peripheral neuromyotic disease. This paper discusses about the design of parameter - latency, amplitude, conduction velocity - measurement system in the sensory nerve. This system consists of three parts which are Main Control Unit(MCU), Stimulator, and external output unit. Also new measurement algorithms which is adaptive threshold method is presented in this paper. The designed system is controlled by MCU includes automatic detection algorithms and self-diagnostic functions.

  • PDF

On the Surface Moisture Availability Parameters to Estimate the Surface Evaporation (증발량 추정을 위한 지표면 가용 수분 계수)

  • Jin, Byoung-Hwa;Hwang, Soo-Jin
    • Journal of Environmental Science International
    • /
    • v.4 no.5
    • /
    • pp.41-41
    • /
    • 1995
  • In order to discuss the differences among the SMP(Surface Moisture Availability Parameter), by previous researchers on the basis of their own theoretical and empirical background, we assessed the SMP according to the soil types and volumetric soil water contents. The results are as follows. There are differences among all the five SMAPs. There''s a tendency that the larger grain size, the higher value of parameters. And they divided into two groups for their value: one group has parameters with exponential function and the other with cosine and linear function. The maximum difference between the two groups appears when the volumetric soil water contents are 0.07$m^3m^{-3}$ for sand, 0.l1$m^3m^{-3}$ for loam, 0.12 for clay, and 0.13$m^3m^{-3}$ for silt loam. So, these differences must be considered when we estimate the surface evaporation rate. From field data, the paddy field soil around Junam reservoir is classified as a silt has high wetness, 0.56. So, the parameter obtained from the field measurement is much higher than that of Clapp and Hornberger(1978)''s Table. This study treated the SMP for a certain point of time in winter season. But if we measured the soil water contents continuously, we could obtain better time-dependent parameter.

Diagnosis of Fault and Abnormal Conditions in a Single-Phase Transformer Using S-parameter Measurement (S파라미터를 이용한 단상 변압기의 이상 상태 진단에 대한 연구)

  • Kim, Jeongeun;Kim, Kwangho;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1344-1352
    • /
    • 2018
  • In this paper, we propose a two-port S-parameter data to diagnose the fault conditions of a single-phase transformer. Using the S-parameters we can measure the reflection and transmission characteristics of signal power at the port of a transformer, which can also be converted into ABCD parameters and Z parameters through a well-known conversion formulas. Transformer fault diagnoses can be performed based on the intuitive and qualitative/quantitative characteristics of the these parameters. In addition, we can obtain wide frequency characteristics at the primary and secondary sides of the transformer, which can be used to get time domain responses using the inverse Fourier transformation with some specific input waveform. In order to verify the effectiveness of the proposed method, the fault conditions were analyzed in simulation and experiment for 3 kVA single phase transformer with 15: 5 turns ratio, and the validity of the proposed method was verified.

Parameter Measurement and Dynamic Performance Estimation of Synchronous Reluctance Motor Considering Iron Loss (철손을 고려한 자기저항 동기전동기의 정수 측정 및 동특성 예측)

  • Lee, J.S.;Hong, J.P.;Hahn, S.C.;Joo, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.58-60
    • /
    • 1999
  • This paper presents dynamic performance prediction using Matlab / simulink after parameter estimation of synchronous reluctance motor considering iron loss. Test motor is 3 phase SynRM with the segmental rotor, rating power is 0.175KW. Experiment equipment is consists of testing motor, dynamometer, vector invertor dynamocontroller, and power analyser. The stator iron loss and rotor iron loss are modelled by additional windings on three-phase winding axis. These windings are transformed into d-q axis, and are represented as equivalent eddy current windings. P-Q circle diagram method and single phase standstill method are used to measure motor parameters considering iron loss.

  • PDF

Miscibility and Properties of cis-Polybutadiene/Ethyl-Branched Polyethylene Blends (II)

  • Cho, Ur-Ryong
    • Macromolecular Research
    • /
    • v.8 no.2
    • /
    • pp.66-72
    • /
    • 2000
  • Cis-Polybutadiene (cis-PBD) and the three polyethylenes (PE's) having different branch content were mixed to investigate crystallinity, thermodynamic interaction parameter(c), and diluents effect. Crys-tallinty of PE's decreased with increasing content of amorphous cis-PBD because of a decrease in both the degree of annealing and kinetics of diffusion of the crystallizable polymer content. The thermodynamic interaction parameter(c) for the three blend systems approximately equals to zero near the melting point. These systems were determined to be miscible on a molecular scale near or above the crystalline melting point of the crystalline PE's. From the measurement of T$\sub$m/ vs. T$\sub$c/ behavior, all the three blends showed a straight line for a plot of T$\sub$m/ vs. T$\sub$c/. This result means that the melting behavior of PE is mainly due to a diluent effect of cis-PBD component.

  • PDF

Uncertainty Assessment of Gas Flow Measurement Using Multi-Point Pitot Tubes (다점 피토관을 이용한 기체 유량 측정의 불확도 평가)

  • Yang, Inyoung;Lee, Bo-Hwa
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.5-10
    • /
    • 2016
  • Gas flow measurement in a closed duct was performed using multi-point Pitot tubes. Measurement uncertainty was assessed for this measurement method. The method was applied for the measurement of air flow into a gas turbine engine in an altitude engine test facility. 46 Pitot tubes, 15 total temperature Kiel probes and 9 static pressure tabs were installed in the engine inlet duct of inner diameter of 264 mm. Five tests were done in an airflow range of 2~10 kg/s. The flow was compressible and the Reynolds numbers were between 450,000 and 2,220,000. The measurement uncertainty was the highest as 6.1% for the lowest flow rate, and lowest as 0.8% for the highest flow rate. This is because the difference between the total and static pressures, which is also related to the flow velocity, becomes almost zero for low flow rate cases. It was found that this measurement method can be used only when the flow velocity is relatively high, e.g., 50 m/s. Static pressure was the most influencing parameter on the flow rate measurement uncertainty. Temperature measurement uncertainty was not very important. Measurement of boundary layer was found to be important for this type of flow rate measurement method. But measurement of flow non-uniformity was not very important provided that the non-uniformity has random behavior in the duct.

Modified Tikhonov regularization in model updating for damage identification

  • Wang, J.;Yang, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.585-600
    • /
    • 2012
  • This paper presents a Modified Tikhonov Regularization (MTR) method in model updating for damage identification with model errors and measurement noise influences consideration. The identification equation based on sensitivity approach from the dynamic responses is ill-conditioned and is usually solved with regularization method. When the structural system contains model errors and measurement noise, the identified results from Tikhonov Regularization (TR) method often diverge after several iterations. In the MTR method, new side conditions with limits on the identification of physical parameters allow for the presence of model errors and ensure the physical meanings of the identified parameters. Chebyshev polynomial is applied to approximate the acceleration response for moderation of measurement noise. The identified physical parameter can converge to a relative correct direction. A three-dimensional unsymmetrical frame structure with different scenarios is studied to illustrate the proposed method. Results revealed show that the proposed method has superior performance than TR Method when there are both model errors and measurement noise in the structure system.

A Novel Transmission Line Characterization Based on Measurement Data Reconfirmation

  • Eo, Yungseon
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.17-27
    • /
    • 2016
  • In the high-frequency characterizations of planar circuit components, measurement data may not be physical. It is mainly due to resonance effects concerned with discontinuities which are inevitable for a planar component characterization. In this paper, a novel accurate transmission line characterization method is presented that excludes the resonance effects based on measurement data reconfirmation. For the physically obvious data acquisition near the resonance frequencies of a transmission line, the additional lines with different line lengths are fabricated on the same substrate. The test transmission lines are characterized by using vector network analyzer (VNA) in 100 MHz to 26.5 GHz. It is shown that an accurate transmission line characterization can be achieved with the proposed measurement data reconfirmation technique.

VLSI implementation of Usage Parameter Control Based on Cell Loss Priority (셀손실 우선순위 기반의 사용 변수제어의 VLSI 구현)

  • 권재우;조태경;최명렬
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.196-199
    • /
    • 2000
  • In this paper has studied an enhanced usage parameter control algorithm, which is one of the preventive traffic control method in ATM networks. The proposed algorithm is based on the CLP(Cell Loss Priority) bit in the ATM cell header. This algorithm can eliminate the measurement phasing problem in cell conformance testing in ATM networks. The proposed algorithm can minimize the cell loss ratio of high priority cell(CLP = 0) and resolve the burstiness of eel]s which may be generated in the multiplexing and demultiplexing procedure. For the performance evaluation, we have simulated the proposed algorithm with discrete time input traffic model and the results show that the performance of the proposed algorithm is better than that of ITU-T usage parameter control algorithm.

  • PDF