• Title/Summary/Keyword: S-PI Controller

Search Result 190, Processing Time 0.025 seconds

A Self-Tuning PI Control System Design for the Flatness of Hot Strip in Finishing Mill Processes

  • Park, Jeong-Ju;Hong, Wan-Kee;Kim, Jong-Shik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.379-387
    • /
    • 2004
  • A novel flatness sensing system which is called the Flatness Sensing Inter-stand Looper(FlatSIL) system is suggested and a self-tuning PI control system using the FlatSIL is designed for improving the flatness of hot strip in finishing mill processes. The FlatSIL system measures the tension along the direction of the strip width by using segmented rolls, and the tension profile is approximated through the tension of each segmented roll. The flatness control system is operated by using the tension profile. The proposed flatness control system as far as the tension profile-measuring device works for the full strip length during the strip rolling in finishing mills. The generalized minimum variance self-tuning (GMV S-T) PI control method is applied to control the flatness of hot strip which has a design parameter as weighting factor for updating the PI gains. Optimizing the design parameter in the GMV S-T PI controller, the Robbins-Monro algorithm is used. It is shown by the computer simulation and experiment that the proposed GMV S-T PI flatness control system has better performance than the fixed PI flatness control system.

A Unifying Design of $H_\infty$ Controller with PI Xpeed Feedback for High Precision Position Control of Flexible System

  • Chun, Yeonghan;Hori, Yoichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.553-557
    • /
    • 1994
  • We propose a design method that uses H$_{\infty}$ optimization method to suppress oscillation of a shaft between motor and load for high precision (0.001 % of reference input) position controls. PI speed control loop was introduced as a minor loop. Standard problem is used for the modeling of the system and Glover-Doyle's algorithm is used for the optimization in the H$_{\infty}$ space. Friction is considered to be an important factor that makes it difficult for the system to reach steady state in short time. In this paper, we propose a hybrid controller that includes PI speed feedback loop, which is expected to have a role to reject torque disturbance like friction.n.n.

  • PDF

Design of PI controller for the sinusoidal type brushless DC motor speed servo system (정현파형 브러시리스 직류 전동기 속도 제어계에 대한 PI 제어기의 설계)

  • 노민식;최중경박승엽전인효
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.207-210
    • /
    • 1998
  • Brushless servomotor systems offer a great advantae in unmanned factories where a great number of servomotors are employed, because of its easy maintenance charateristics and controllability. This paper propose a sinusoidal type brushless DC motor speed servo system which has high efficiency and usability in industrial field as described above. And this servo system is realized by a new Auto-Tuning PI control algorithm and verified it's practical potential of implementation by self-designed driver system. In particular, DSP(digital signal processor) is adopted in this study as controller and sensor signal processor owing to their fast computational capability and suitable architecture.

  • PDF

Trajectory Tracking Control of a Boom.Arm System of Hydraulic Excavator Using Disturbance Observer (외란관측기를 이용한 유압굴삭기 붐.아암 시스템의 궤적추적제어)

  • Cho S.H.;Ahn G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • This paper deals with the issue of trajectory tracking control of a hydraulic excavator using disturbance observer in order to compensate external disturbances occuring from coupling between attachment, asymmetry of a single rod cylinder, and deadzone of main control valve. Disturbance compensation control system with disturbance observer has been constructed for the boom and arm respectively. Simulation results were compared with experimental results to validate the computer simulation system of hydraulic excavator itself. Computer simulation shows that disturbance compensation control is effective for compensating system nonlinearity and thus improves positioning accuracy and trajectory tracking performance. Steady state error has been decreased by adding PI controller to this control scheme.

  • PDF

Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System (계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석)

  • No, Gyeong-Su;Ryu, Haeng-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

An adaptive control and robust control of satellite (위성체의 적응제어 및 강인제어 연구)

  • 노영환;진익민;김진철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1688-1691
    • /
    • 1997
  • In the time-invarient system, the adaptive controller was designed for the non-tracking error in the 1980's. In this study, the Model Reference Adaptive Control using on-line processing method is used to identify the coefficients of the model, and the Robust Controller (H.inf.) is designed to stabilize the rigid body and the flexible body of satellite, which can be perturbed due to disturbance, etc. The result obtained by H.inf. controller is compared with that of the PI(Proportional and Intergation) controller which is commonly used for stabilizing satellite.

  • PDF

Complex Vector Current Control of Grid Connected Inverter Robust for Inductance Variation (인덕턴스 변화에 강인한 계통연계형 인버터의 복소 벡터 전류제어기)

  • Lee, Taejin;Jo, Jongmin;Shin, Changhoon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1648-1654
    • /
    • 2016
  • This paper analyzes complex vector current control for the enhanced cross-coupling compensation in accordance with parameter variation in grid-connected inverter system, and verifies through simulation and experiment. Complex vector current control is performed in the synchronous reference frame through d-q transformation. It generates cross-coupling components with rotating nominal angular frequency. In general, cross-coupling elements are compensated by decoupling terms added to output of conventional decoupling PI controller. But, it is impossible to compensate them perfectly which transient response is especially deteriorated such as large overshoot and slow tracking, when variation of grid impedance or measurement error occurs. However, complex vector current control can improve stability and response characteristic of current control regardless of the situation as before. Decoupling controller and complex vector controller are represented through complex forms, and these controllers are analyzed by using frequency response in s-domain, respectively. It is verified that complex vector controller has more superior response characteristic than decoupling controller through MATALB, PSIM and experimental in 5kW grid-connected inverter when L filter parameter is varied from 1.1mH to increase double, 2.2mH.

A Threshold Controller for FAST Hardware Accelerator (FAST 하드웨어 가속기를 위한 임계값 제어기)

  • Kim, Taek-Kyu;Suh, Yong-Suk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.187-192
    • /
    • 2014
  • Various researches are performed to extract significant features from continuous images. The FAST algorithm has the simple structure for arithmetic operation and it is easy to extraction the features in real time. For this reason, the FPGA based hardware accelerator is implemented and widely applied for the FAST algorithm. The hardware accelerator needs the threshold to extract the features from images. The threshold is influenced not only the number of extracted features but also the total execution time. Therefore, the way of threshold control is important to stabilize the total execution time and to extract features as much as possible. In order to control the threshold, this paper proposes the PI controller. The function and performance for the proposed PI controller are verified by using test images and the PI control logic is designed based on Xilinx Vertex IV FPGA. The proposed scheme can be implemented by adding 47 Flip Flops, 146 LUTs, and 91 Slices to the FAST hardware accelerator. This proposed approach only occupies 2.1% of Flip Flop, 4.4% of LUTs, and 4.5% of Slices and can be regarded as a small portion of hardware cost.

PD/PID Speed Controller Design for Low-stiffness Servo Drive System (저강성 서보 구동시스템을 위한 PD/PID 속도제어기 설계)

  • Bae S.G.;Seok J.K.;Lee D.C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.544-547
    • /
    • 2003
  • The purpose of this paper is to develop the straightforward design guidelines of PD/PID speed controller for Industry servo drives with plug and play concept. The controller gains are uniquely determined from the current control loop dynamics, speed loop delay, and mechanical parameters. In order to eliminate the mechanical friction uncertainties, an automatic PD/PI control mode switching algorithm Is introduced using online spectrum analysis of motor torque command. The dynamic performance of the proposed scheme assures a fast tracking response curve with minimal oscillation and settling time over the whole operating conditions. For comprehensive comparison of conventional PI control scheme, extensive test is carried out on actual servo system.

  • PDF

Speed Control of Brushless DC Motor by Model Reference Adaptive Control (브러시리스 직류 전동기의 기준모델 적응제어에 의한 속도제어)

  • Lee, J.H.;Baek, S.H.;Maeng, I.J.;Chung, I.R.;Jung, G.C.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.403-405
    • /
    • 1999
  • The model reference adaptive control(MRAC) algorithm is applied to the speed control of an inverter driven permanent magnet brushless do motor MRAC is compared to a standard PI controller. Applying this algorithm has also been proved by simulations that quick speed response without over-shoot could be obtained for the motor system with variable parameters. Simulation results show that the adaptive controller is superior to the PI controller.

  • PDF