• 제목/요약/키워드: S-N Curves

검색결과 399건 처리시간 0.025초

API 2W Gr.50 강재를 이용한 해양구조물 Tendon Porch의 피로성능 평가 (Assessment of Fatigue Strength Characteristics of Tendon Porch in Offshore Platforms for API 2W Gr. 50 Steel)

  • 임성우;이주성
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.82-88
    • /
    • 2006
  • This assessment is concerned with the fatigue strength of the tendon porch found in TLP. Lorge-scale fatigue tests with models constructed at 30% the size of the real structures have been carried out to investigate the fatigue behavior of the API 2W Grade 50 steel recently produced by POSCO. The fatigue life for the present test models was obtained based on the concept of nominal stress. A comparison of the present test results with those obtained by a numerical approach based on the structural analysis results has showngood agreement. The present results were also compared with the design curves in DnV RP-C203.

Al-Si-Ca 합금 폼의 피로 거동에 대한 두께 효과 (Thickness Effect on Compressive Fatigue Behavior of Al-Si-Ca Alloy Foam)

  • 김일현;마이눌;김엄기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.179-182
    • /
    • 2007
  • The compressive fatigue tests on the closed cell Al-Si-Ca alloy foams with two different thicknesses were performed using a load ratio of 0.1. The quasi-static and cyclic compressive behaviors were obtained respectively. The fatigue stress-life (S-N) curves were evaluated from the obtained cyclic compressive behaviors. S-N curves were presented for the onset of progressive shortening. It turned out that the fatigue strength showed higher value for the thicker foam and the onset of shortening of thinner foam took place earlier. The crushing was found to initiate in a single band which broadens gradually with additional fatigue cycles. Progressive shortening of the specimen took place due to a combination of low cycle fatigue failure and cyclic ratcheting.

  • PDF

Linear fracture envelopes for fatigue assessment of welds in bridges

  • Ghosh, A.;Oehlers, D.J.;Wahab, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제4권4호
    • /
    • pp.347-364
    • /
    • 1996
  • Presently welded components are designed using S/N curves which predict only the fatigue life of the component. In order to ascertain the condition of the weld at any intermediate period of its life inspection is carried out. If cracks are detected in a weld fracture mechanics is used to find their remaining life. A procedure for assessment is developed here that can be used to verify the condition of a weld before inspection is carried out to detect cracks. This simple method has been developed using linear fracture envelopes by combining S/N curves with linear elastic fracture mechanics.

SNC815 기어의 피로강도에 미치는 열처리 효과에 관한 연구 (A Study on the Effect of Heat-treatment on the Fatigue Strength of SNC815 Spur Gears)

  • 류성기;남태현;이진이
    • 열처리공학회지
    • /
    • 제13권1호
    • /
    • pp.21-26
    • /
    • 2000
  • This study deals with effects of heat-treatment on the fatigue strength of SNC815 spur gears. The test gears are heat-treated by two different treatments. After carburization, one group of the test gears is quenched directly, while the other group is fumace cooled, reheated then quenched. The fatigue test at a constant stress amplitude is performed by using an electrohydraulic servo-controlled pulsating tester. The S-N curves are obtained and illustrated. By comparing the estimated strength with the experimental results, the validity of the previous experimental formula, presented by the author for estimating the fatigue strength of carburized gears, was discussed on these tested gears.

  • PDF

입체트러스형 전단연결재를 갖는 합성판의 피로거동 (Fatigue Behavior of Composite Beams with Pyramidal Shear Connector)

  • 이경동;한재익
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.211-216
    • /
    • 2002
  • A steel plate-concrete composite slab with pyramidal shear connectors, named TSC composite slab, is expected to have sufficient bending strength and flexural rigidity for loads during and after construction. Fatigue problems play an important role in designing composite slab as bridge decks under traffic conditions. In this paper, a series of fatigue tests was carried out on TSC beam specimens under various loading conditions, in order to evaluate the fatigue strength of TSC composite slabs. The results are as follows : (1) the fatigue failure of TSC composite beams results from the tensile fracture of bottom steel plate and shear connector, and (2) fatigue strength of the steel plate for two million cycles can be estimated to be $1144kgf/cm^2$ from the S-N curves.

FATIGUE DESIGN FORSUS30IL SPOT-WELDED MULTI-LAP JOINTS SUBJECTED TO TENSILE SHEAR LOAD

  • Na, T.H.m;Jung, W.S.;Bae, D.H;I.S.Shon
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.121-126
    • /
    • 2002
  • The railroad cars or the commercial vehicles are generally manufactured by the spot welding. Among various kinds of spot welded lap joints, multi-lap joints are one of popular joints in manufacturing their body structures. But, fatigue strength of these joints are lower than that of base metal due to high stress concentration at the nugget edge of the spot weld and are known to considerably be influenced by welding conditions as well as the mechanical and geometrical factors. Thus, it is necessary to establish a reasonable and systematic fatigue design criterion for spot welded multi-lap joints. In this paper, the $\Delta$P-N$_{f}$ curves has been rearranged in the $\Delta$$\sigma$-N$_{f}$ relation with the maximum stress at the nugget edge of spot welded multi-lap joints subjected to tensile shear load. Consequently, the fatigue data were evaluated in terms of fracture mechanics by plotting on the $\Delta$OP-N$_{f}$ curves. From the results obtained, both of them have been revealed to be applicable to fatigue design of spot welded multi-lap joints. However, the fracture mechanical approach is found to be more effective than the maximum stress approach in the range on N$_{f}$$\geq$2x10$^{5}$ . .

  • PDF

구조응력 및 핫스팟응력을 이용한 피로수명 평가에 관한 실험적 연구 (An Experimental Study of fatigue Strength of Welded Structures Using Structural Stress and Hot Spot Stress)

  • 강성원;김명현;김석훈;하우일
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.129-135
    • /
    • 2005
  • At present, fatigue design of welded structures is primarily based on a nominal stress or hot spot stress approach with a series of classified weld S-N curves. Although well accepted by major industries, the nominal stress based fatigue design approach is cumbersome in terms of securing a series of S-N curves corresponding to each class of joint types and loading modes. The hot spot stress based fatigue design has a difficulty of finding a proper stress through the global model, the midium size model, and the detail model of ship structure. Also, it is difficult to link proper displacements within three different mesh size models. Recently, the structural stress is proposed as a mesh-size insensitive structural stress definition that gives a stress state at weld toe with relatively large mesh size. However, this method requires an experimental validation in obtaining the fatigue strength of weldments. Therefore, in this study, a series of experiment is performed for various sizes of weldments.

DISTRIBUTION OF RATIONAL POINTS IN THE REAL LOCUS OF ELLIPTIC CURVES

  • HAHN, S.;LEE, D.H.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제6권2호
    • /
    • pp.25-30
    • /
    • 2002
  • Let $E/{\mathbb{Q}$ be an elliptic curve defined over rationals, P is a non-torsion rational point of E and $$S=\{[n]P{\mid}n{\in}{\mathbb{Z}}\}$$. then S is dense in the component of $E({\mathbb{R}})$ which contains the infinity in the usual Euclidean topology or in the topology defined by the invariant Haar measure and it is uniformly distributed.

  • PDF

A STUDY OF SUBDIVISION METHOD TO THREE AND FIVE SIDED FACES BASED ON REGULAR POLYGON

  • Muraki, Yuta;Konno, Kouichi;Tokuyama, Yoshimasa
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.551-556
    • /
    • 2009
  • 3-D CAD (Computer Aided Design) system is an indispensable tool for manufacturing. A lot of engineers have studied for the methods to generate a curved surface on an N-sided shape, which is the basic technology of 3-D CAD systems. This surface generation, however, has three problems on the case of long and narrow shapes: the resultant surface is distorted, the surface is not continuous to adjacent surfaces, or additional user inputs are required to generate the surface. Conventional methods have not yet solved these problems at the same time. In this paper, we propose the method to generate internal curves that divide a long and narrow shape into regular N-sided sections so as to divide the shape into an N-sided section and four-sided ones. Our method controls the shape of internal curves by dividing an N-sided long and narrow shape into an N-sided section and four-sided ones, and solves distortion of the generated curved surface. In addition, each of the generated sections is interpolated with G1-continuous surfaces. This process does not require any user's further input. Therefore, the three problems mentioned above will be solved at the same time.

  • PDF

HOLONOMY DISPLACEMENTS IN THE HOPF BUNDLES OVER $\mathcal{C}$Hn AND THE COMPLEX HEISENBERG GROUPS

  • Choi, Young-Gi;Lee, Kyung-Bai
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.733-743
    • /
    • 2012
  • For the "Hopf bundle" $S^1{\rightarrow}S^{2n,1}{\rightarrow}\mathbb{C}H^n$, horizontal lifts of simple closed curves are studied. Let ${\gamma}$ be a piecewise smooth, simple closed curve on a complete totally geodesic surface $S$ in the base space. Then the holonomy displacement along ${\gamma}$ is given by $$V({\gamma})=e^{{\lambda}A({\gamma})i}$$ where $A({\gamma})$ is the area of the region on the surface $S$ surrounded by ${\gamma}$; ${\lambda}=1/2$ or 0 depending on whether $S$ is a complex submanifold or not. We also carry out a similar investigation for the complex Heisenberg group $\mathbb{R}{\rightarrow}\mathcal{H}^{2n+1}{\rightarrow}\mathbb{C}^n$.