J. KSIAM Vol.6, No.2, 25-30, 2002

DISTRIBUTION OF RATIONAL POINTS IN THE REAL LOCUS OF ELLIPTIC CURVES

S. HAHN AND D. H. LEE

ABSTRACT. Let E/\mathbb{Q} be an elliptic curve defined over rationals, \mathbf{P} is a non-torsion rational point of E and

$$S = \{ [n]\mathbf{P} | n \in \mathbb{Z} \}.$$

then S is dense in the component of $E(\mathbb{R})$ which contains the infinity in the usual Euclidean topology or in the topology defined by the invariant Haar measure and it is uniformly distributed.

Let g_2 and g_3 be two rational integers with non-zero discriminant $\Delta(E) = g_2^3 - 27g_3^2$ which defines an elliptic curve

$$E: y^2 = 4x^3 - g_2x - g_3.$$

Let ω_1 and ω_2 be a fundamental pair of periods for $E, \Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ and

$$F = \{\alpha_1 \omega_1 + \alpha_2 \omega_2 | 0 \le a, b \le 1\}$$

denote a fundamental region for the lattice Λ which can be identified with the complex locus $E(\mathbb{C})$ or the quotient \mathbb{C}/Λ by the isomorphism π

$$\pi: \mathbb{C}/\Lambda \to E(\mathbb{C})$$
$$z \mapsto (\wp(z), \wp'(z))$$

where \wp denotes the Weierstrass \wp function defined by a lattice Λ . So the real locus $E(\mathbb{R})$ can be identified as a subset of F. For convenience we can further identify F with the unit square

$$I = \{(x, y) \in \mathbb{R}^2 | 0 \le x, y \le 1\}$$

on the Euclidean plane.

Consider the polynomial $f(x) = 4x^3 - g_2x - g_3$ which is the right side of the defining equation. If f(x) has three distinct real roots $e_3 < e_2 < e_1$, that is $\Delta > 0$, then we may take

$$\omega_1 = \frac{\pi}{M(\sqrt{e_1 - e_3}, \sqrt{e_1 - e_2})}, \ \omega_2 = \frac{i\pi}{M(\sqrt{e_1 - e_3}, \sqrt{e_2 - e_3})}$$

where M(a, b) denotes the arithmetic-geometric mean defined by Gauss. In this case, ω_1 is positive real and ω_2 is imaginary and $Im(\omega_2) > 0$ since $e_3 < e_2 < e_1$. If f(x) has only one real root, e and two complex roots, that is $\Delta < 0$ we may take

$$\omega_1 = \frac{2\pi}{M(2\sqrt{\beta}, \sqrt{2\beta + \alpha})}, \ \omega_2 = -\frac{\omega_1}{2} + \frac{i\pi}{M(2\sqrt{\beta}, \sqrt{2\beta - \alpha})}.$$

where $\alpha = 3e$ and $\beta = \sqrt{3e^2 - \frac{g_2}{4}}$. In this case ω_1 is also positive real and $Im(\omega_2) > 0$, $Re(\omega_2) = -\frac{1}{2}\omega_1$ since $\beta > 0$ and $2\beta \pm \alpha > 0$.

Without loss of generality, we may assume that $0 = Arg(\omega_1) < Arg(\omega_2) < \pi$. Schneider showed that ω_1 and ω_2 are both transcendental numbers. He also showed that the quotient ω_1/ω_2 is either a transcendental or an imaginary quadratic irrational. In the latter case E has complex multiplication.

Our aim in this paper is to study the distribution of the rational points $E(\mathbb{Q})$ inside the real locus $E(\mathbb{R})$. More precisely, we are interested in the question whether $E(\mathbb{Q})$ is dense in $E(\mathbb{R})$ in the Euclidean topology when $E(\mathbb{Q})$ has positive rank. In a similar fashion one might ask whether the sequence of rational points [n]P, $n = 0, \pm 1, \pm 2, \pm 3, \cdots$, is uniformly distributed inside $E(\mathbb{R})$ under the metric given by the invariant differential

$$\omega = \frac{dx}{2y} = \frac{dx}{\sqrt{4x^3 - g_2 x - g_3}}$$

when P is a non-torsion point of $E(\mathbb{Q})$. The above question is equivalent to whether the set $\{n\pi^{-1}(P)|n=0,\pm 1,\pm 2,\cdots\}$ is uniformly distributed inside the inverse image of $\pi^{-1}(E(\mathbb{R}))$ under the usual Euclidean topology.

 $E(\mathbb{R})$ has either two or one connected components depending on whether the cubic

equation

$$4x^3 - g_2x - g_3 = 0$$

on the right side of the defining equation has three distinct real roots (if and only if $\Delta(E) = g_2^3 - 27g_3^2 > 0$) or one real root(if and only if $\Delta(E) = g_2^3 - 27g_3^2 < 0$). We will call the (possibly two) component(s) by finite component and infinite component depending upon whether the Euclidean length of the component is finite or infinite. Let P be a non-torsion point of $E(\mathbb{Q})$ corresponding to

 $\alpha_1\omega_1 + \alpha_2\omega_2$

in \mathbb{C}/Λ (or to (α_1, α_2) in I). Then α_1 and α_2 can not be both rational, since otherwise P will be a torsion point. Kronecker's classical theorem on simultaneous Diophantine approximation is as follows: If 1, $\alpha_1, \dots, \alpha_k$ are linearly independent over the rationals \mathbb{Q} , then the set

$$\left\{ \left(\{n\alpha_1\}, \{n\alpha_2\}, \cdots, \{n\alpha_k\}\right) \middle| n \in \mathbb{Z} \right\}$$

is dense in the k-dimensional unit box $[0,1]^k$ where $\{x\} = x - [x]$ denotes the fractional part of x. So Kronecker's theorem tells that the numbers 1, α_1 , and α_2 can not be linearly independent over the rationals \mathbb{Q} , since otherwise the sequence S,

$$S = \{ [n]P | n = 0, \pm 1, \pm 2, \pm 3, \cdots \} \subseteq E(\mathbb{Q})$$

will be dense in the whole $E(\mathbb{C})$. Hence we have an equation

$$r + s\alpha_1 + t\alpha_2 = 0$$

for some relatively prime integers r, s, and t which are not zeroes simultaneously.

Computing α_1 and α_2 is called the elliptic logarithm problem. And it is possible to compute α_1 and α_2 to any prescribed precision for any elliptic curve with a non-torsion point P.

Algorithm 1. For a given elliptic curve $E: y^2 = f(x) = 4x^3 - g_2x - g_3$, and P = (x, y) be a non-torsion point of $E(\mathbb{Q})$, we calculate the given sufficiently accurate approximation of the inverse image z of $\pi^{-1}(P)$.

CASE 1 :Δ(E) > 0 and e₃ < e₂ < e₁ are real roots of f(x).
1. Set a₁ = √e₁ - e₃, b₁ = √e₁ - e₂.
2. If P is contained in the finite component, that is e₃ < x < e₂

$$\lambda = \frac{y}{(x - e_3)}, X = \frac{\lambda^2}{4} - x - e_3$$

Otherwise X = x. Finally set $c_1 = \sqrt{X - e_3}$.

3. Compute $a_{n+1} = \frac{1}{2}(a_n + b_n), b_{n+1} = \sqrt{a_n b_n}, c_{n+1} = \frac{1}{2}(c_n + \sqrt{c_n^2 + b_n^2 - a_n^2}).$

4. If $a = \lim a_n, c = \overline{\lim} c_n$ then

 $z = \begin{cases} \frac{1}{a} \sin^{-1}(\frac{a}{c}), & \text{if } y \ge 0 \text{ and } x \ge e_1\\ \omega_1 - \frac{1}{a} \sin^{-1}(\frac{a}{c}), & \text{if } y < 0 \text{ and } x > e_1\\ \frac{1}{a} \sin^{-1}(\frac{a}{c}) + \frac{1}{2}w_2, & \text{if } y < 0 \text{ and } e_3 < x < e_2\\ \omega_1 - \frac{1}{a} \sin^{-1}(\frac{a}{c}) + \frac{1}{2}w_2, & \text{if } y \ge 0 \text{ and } e_3 < x \le e_2 \end{cases}$

• CASE 2 : $\Delta(E) < 0$ and e is the unique real root of f(x).

1. Set
$$\alpha = 3e, \beta = \sqrt{3e^2 - \frac{g_2}{4}}, a_1 = 2\sqrt{\beta}, b_1 = \sqrt{2\beta + \alpha}, c_1 = \frac{(x - e + \beta)}{\sqrt{x - e}}$$

2. Compute $a_{n+1} = \frac{1}{2}(a_n + b_n), b_{n+1} = \sqrt{a_n b_n}, c_{n+1} = \frac{1}{2}(c_n + \sqrt{c_n^2 + b_n^2 - a_n^2})$
3. If $a = \lim a_n, c = \lim c_n$ then

$$z = \begin{cases} \frac{1}{a}\sin^{-1}(\frac{a}{c}), & \text{if } y < 0 \text{ and } (x-e)^2 - \beta^2 > 0\\ \frac{1}{2}\omega_1 - \frac{1}{a}\sin^{-1}(\frac{a}{c}), & \text{if } y < 0 \text{ and } (x-e)^2 - \beta^2 \le 0, \text{ or } y = 0\\ \frac{1}{2}\omega_1 + \frac{1}{a}\sin^{-1}(\frac{a}{c}), & \text{if } y > 0 \text{ and } (x-e)^2 - \beta^2 < 0\\ \omega_1 - \frac{1}{a}\sin^{-1}(\frac{a}{c}), & \text{if } y > 0 \text{ and } (x-e)^2 - \beta^2 \ge 0 \end{cases}$$

S. HAHN AND D. H. LEE

By the above algorithm, we can decide the distribution of S. Case 1 : Assume that $\Delta(E) > 0$ and P is a non-torsion point of $E(\mathbb{Q})$. Let

 $V = \{\alpha_1 \omega_1 | 0 \le \alpha_1 \le 1\}.$

Then $\pi^{-1}(E(\mathbb{R})) = V \cup V + \frac{1}{2}\omega_2$ and V is the inverse image of the infinite component. If P is contained in the infinite component, then $z = \alpha_1 \omega_1$ for some irrational number α_1 since P is non-torsion. Hence $\pi^{-1}(S) \subset V$ and it is dense in V. Moreover it is uniformly distributed. Therefore S is dense in the infinite component and uniformly distributed.

If P is contained in the finite component, then $z = \alpha_1 \omega_1 + \frac{1}{2} \omega_2$ for some irrational number α_1 since P is non-torsion. In this case $\{2kz/\Lambda | k \in \mathbb{Z}\}$ is dense in V and $\{(2k-1)z/\Lambda | k \in \mathbb{Z}\}$ is dense in $V + \frac{1}{2}\omega_2$. And they are uniformly distributed respectively. Therefore S is dense in the whole component of $E(\mathbb{R})$ and uniformly distributed. In particular $\{[2k]P | k \in \mathbb{Z}\}$ is dense in the infinite component and $\{[2k-1]P | k \in \mathbb{Z}\}$ is dense in the finite component.

Case 2: Assume that $\Delta(E) < 0$ and P is a non-torsion point of $E(\mathbb{Q})$. Then $\pi^{-1}(E(\mathbb{R})) = V$ and $z = \alpha_1 \omega_1$ for some irrational number α_1 since P is non-torsion. Since $\{kz/\Lambda | k \in \mathbb{Z}\}$ is dense in V and uniformly distributed, S is dense in $E(\mathbb{R})$ and uniformly distributed.

So we get

Proposition 2. Suppose that E/\mathbb{Q} is an elliptic curve defined over the rationals, P is a non-torsion rational point of E. Then the set S is dense in the component of $E(\mathbb{R})$ which contains the infinity and uniformly distributed.

Example. Let $E: y^2 = 4x^3 - 624x + 2240$ and $P_1 = (13, 54), P_2 = (2, 32) \in E(\mathbb{Q})$, hence P_1 is contained in the infinite component and P_2 is contained the finite component.

FIGURE 1. $E: y^2 = 4x^3 - 624x + 2240$

28

FIGURE 2. $[n]P_1$ points $(1 \le n \le 140)$

FIGURE 3. $[2n-1]P_2$ points $(1 \le n \le 51)$

FIGURE 4. $[2n]P_2$ points $(1 \le n \le 50)$

FIGURE 5. $[n]P_2$ points $(1 \le n \le 101)$

References

- [1] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993.
- [2] A. Knapp, *Elliptic Curves*, Princeton University Press, 1992.
- [3] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, 1986.
- [4] A. Schidlovski, Transcendental Numbers, Walter de Gruyter, 1989.
- [5] R. Tijdeman, On the Gel'fond-Baker method and its applications, Proc. Sympo. Pure Math. 28(1976), 242–268.

Department of Mathematics KAIST Taejon, 305-701 KOREA E-mail: sghahn@mathx.kaist.ac.kr

National Security Research Institute (NSRI) Taejon 305-350, KOREA e-mail : dlee@etri.re.kr