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DISTRIBUTION OF RATIONAL POINTS IN THE REAL LOCUS OF
ELLIPTIC CURVES

S. HAHN AND D. H. LEE

Abstract. Let E/Q be an elliptic curve defined over rationals, P is a non-torsion
rational point of E and

S = {[n]P|n ∈ Z}.
then S is dense in the component of E(R) which contains the infinity in the usual
Euclidean topology or in the topology defined by the invariant Haar measure and it
is uniformly distributed.

Let g2 and g3 be two rational integers with non-zero discriminant ∆(E) = g3
2 − 27g2

3

which defines an elliptic curve

E : y2 = 4x3 − g2x− g3.

Let ω1 and ω2 be a fundamental pair of periods for E, Λ = Zω1 + Zω2 and

F = {α1ω1 + α2ω2|0 ≤ a, b ≤ 1}
denote a fundamental region for the lattice Λ which can be identified with the complex
locus E(C) or the quotient C/Λ by the isomorphism π

π : C/Λ → E(C)

z 7→ (℘(z), ℘′(z))
where ℘ denotes the Weierstrass ℘ function defined by a lattice Λ. So the real locus
E(R) can be identified as a subset of F . For convenience we can further identify F
with the unit square

I = {(x, y) ∈ R2|0 ≤ x, y ≤ 1}
on the Euclidean plane.

Consider the polynomial f(x) = 4x3−g2x−g3 which is the right side of the defining
equation. If f(x) has three distinct real roots e3 < e2 < e1, that is ∆ > 0, then we may
take

ω1 =
π

M(
√

e1 − e3,
√

e1 − e2)
, ω2 =

iπ

M(
√

e1 − e3,
√

e2 − e3)
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where M(a, b) denotes the arithmetic-geometric mean defined by Gauss. In this case,
ω1 is positive real and ω2 is imaginary and Im(ω2) > 0 since e3 < e2 < e1. If f(x) has
only one real root, e and two complex roots, that is ∆ < 0 we may take

ω1 =
2π

M(2
√

β,
√

2β + α)
, ω2 = −ω1

2
+

iπ

M(2
√

β,
√

2β − α)
.

where α = 3e and β =
√

3e2 − g2

4 . In this case ω1 is also positive real and Im(ω2) >

0, Re(ω2) = −1
2ω1 since β > 0 and 2β ± α > 0.

Without loss of generality, we may assume that 0 = Arg(ω1) < Arg(ω2) < π.
Schneider showed that ω1 and ω2 are both transcendental numbers. He also showed
that the quotient ω1/ω2 is either a transcendental or an imaginary quadratic irrational.
In the latter case E has complex multiplication.

Our aim in this paper is to study the distribution of the rational points E(Q) inside
the real locus E(R). More precisely, we are interested in the question whether E(Q) is
dense in E(R) in the Euclidean topology when E(Q) has positive rank. In a similar fash-
ion one might ask whether the sequence of rational points [n]P , n = 0,±1,±2,±3, · · · ,
is uniformly distributed inside E(R) under the metric given by the invariant differential

ω =
dx

2y
=

dx√
4x3 − g2x− g3

when P is a non-torsion point of E(Q). The above question is equivalent to whether
the set {nπ−1(P )|n = 0,±1,±2, · · · } is uniformly distributed inside the inverse image
of π−1(E(R)) under the usual Euclidean topology.
E(R) has either two or one connected components depending on whether the cubic

equation
4x3 − g2x− g3 = 0

on the right side of the defining equation has three distinct real roots(if and only if
∆(E) = g3

2 − 27g2
3 > 0) or one real root(if and only if ∆(E) = g3

2 − 27g2
3 < 0). We

will call the (possibly two) component(s) by finite component and infinite component
depending upon whether the Euclidean length of the component is finite or infinite.
Let P be a non-torsion point of E(Q) corresponding to

α1ω1 + α2ω2

in C/Λ(or to (α1, α2) in I). Then α1 and α2 can not be both rational, since otherwise
P will be a torsion point. Kronecker’s classical theorem on simultaneous Diophantine
approximation is as follows: If 1, α1, · · · , and αk are linearly independent over the
rationals Q, then the set

{
({nα1}, {nα2}, · · · , {nαk})

∣∣ n ∈ Z}
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is dense in the k-dimensional unit box [0, 1]k where {x} = x− [x] denotes the fractional
part of x. So Kronecker’s theorem tells that the numbers 1, α1, and α2 can not be
linearly independent over the rationals Q, since otherwise the sequence S,

S =
{
[n]P |n = 0,±1,±2,±3, · · ·} ⊆ E(Q)

will be dense in the whole E(C). Hence we have an equation

r + sα1 + tα2 = 0

for some relatively prime integers r, s, and t which are not zeroes simultaneously.
Computing α1 and α2 is called the elliptic logarithm problem. And it is possible to

compute α1 and α2 to any prescribed precision for any elliptic curve with a non-torsion
point P .

Algorithm 1. For a given elliptic curve E : y2 = f(x) = 4x3−g2x−g3, and P = (x, y)
be a non-torsion point of E(Q), we calculate the given sufficiently accurate approxima-
tion of the inverse image z of π−1(P ).

• CASE 1 :∆(E) > 0 and e3 < e2 < e1 are real roots of f(x).
1. Set a1 =

√
e1 − e3, b1 =

√
e1 − e2.

2. If P is contained in the finite component, that is e3 < x < e2

λ =
y

(x− e3)
, X =

λ2

4
− x− e3

Otherwise X = x. Finally set c1 =
√

X − e3.
3. Compute an+1 = 1

2(an + bn), bn+1 =
√

anbn, cn+1 = 1
2(cn +

√
c2
n + b2

n − a2
n).

4. If a = lim an, c = lim cn then

z =





1
a sin−1(a

c ), if y ≥ 0 and x ≥ e1

ω1 − 1
a sin−1(a

c ), if y < 0 and x > e1
1
a sin−1(a

c ) + 1
2w2, if y < 0 and e3 < x < e2

ω1 − 1
a sin−1(a

c ) + 1
2w2, if y ≥ 0 and e3 < x ≤ e2

• CASE 2 : ∆(E) < 0 and e is the unique real root of f(x).

1. Set α = 3e, β =
√

3e2 − g2

4 , a1 = 2
√

β, b1 =
√

2β + α, c1 = (x−e+β)√
x−e

2. Compute an+1 = 1
2(an + bn), bn+1 =

√
anbn, cn+1 = 1

2(cn +
√

c2
n + b2

n − a2
n).

3. If a = lim an, c = lim cn then

z =





1
a sin−1(a

c ), if y < 0 and (x− e)2 − β2 > 0
1
2ω1 − 1

a sin−1(a
c ), if y < 0 and (x− e)2 − β2 ≤ 0, or y = 0

1
2ω1 + 1

a sin−1(a
c ), if y > 0 and (x− e)2 − β2 < 0

ω1 − 1
a sin−1(a

c ), if y > 0 and (x− e)2 − β2 ≥ 0
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By the above algorithm, we can decide the distribution of S.
Case 1 : Assume that ∆(E) > 0 and P is a non-torsion point of E(Q). Let

V = {α1ω1|0 ≤ α1 ≤ 1}.
Then π−1(E(R)) = V ∪ V + 1

2ω2 and V is the inverse image of the infinite component.
If P is contained in the infinite component, then z = α1ω1 for some irrational number
α1 since P is non-torsion. Hence π−1(S) ⊂ V and it is dense in V . Moreover it is
uniformly distributed. Therefore S is dense in the infinite component and uniformly
distributed.
If P is contained in the finite component, then z = α1ω1 + 1

2ω2 for some irrational
number α1 since P is non-torsion. In this case {2kz/Λ|k ∈ Z} is dense in V and
{(2k − 1)z/Λ|k ∈ Z} is dense in V + 1

2ω2. And they are uniformly distributed respec-
tively. Therefore S is dense in the whole component of E(R) and uniformly distributed.
In particular {[2k]P |k ∈ Z} is dense in the infinite component and {[2k − 1]P |k ∈ Z}
is dense in the finite component.

Case 2 : Assume that ∆(E) < 0 and P is a non-torsion point of E(Q). Then
π−1(E(R)) = V and z = α1ω1 for some irrational number α1 since P is non-torsion.
Since {kz/Λ|k ∈ Z} is dense in V and uniformly distributed, S is dense in E(R) and
uniformly distributed.

So we get

Proposition 2. Suppose that E/Q is an elliptic curve defined over the rationals, P is
a non-torsion rational point of E. Then the set S is dense in the component of E(R)
which contains the infinity and uniformly distributed.

Example. Let E : y2 = 4x3−624x+2240 and P1 = (13, 54), P2 = (2, 32) ∈ E(Q), hence
P1 is contained in the infinite component and P2 is contained the finite component.
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Figure 1. E : y2 = 4x3 − 624x + 2240
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Figure 2. [n]P1 points (1 ≤ n ≤ 140)
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Figure 3. [2n− 1]P2 points (1 ≤ n ≤ 51)
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Figure 4. [2n]P2 points (1 ≤ n ≤ 50)
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Figure 5. [n]P2 points (1 ≤ n ≤ 101)
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