DISTRIBUTION OF RATIONAL POINTS IN THE REAL LOCUS OF ELLIPTIC CURVES

S. HAHN AND D. H. LEE

Abstract

Let E / \mathbb{Q} be an elliptic curve defined over rationals, \mathbf{P} is a non-torsion rational point of E and $$
S=\{[n] \mathbf{P} \mid n \in \mathbb{Z}\} .
$$ then S is dense in the component of $E(\mathbb{R})$ which contains the infinity in the usual Euclidean topology or in the topology defined by the invariant Haar measure and it is uniformly distributed.

Let g_{2} and g_{3} be two rational integers with non-zero discriminant $\Delta(E)=g_{2}^{3}-27 g_{3}^{2}$ which defines an elliptic curve

$$
E: y^{2}=4 x^{3}-g_{2} x-g_{3} .
$$

Let ω_{1} and ω_{2} be a fundamental pair of periods for $E, \Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ and

$$
F=\left\{\alpha_{1} \omega_{1}+\alpha_{2} \omega_{2} \mid 0 \leq a, b \leq 1\right\}
$$

denote a fundamental region for the lattice Λ which can be identified with the complex locus $E(\mathbb{C})$ or the quotient $\mathbb{C} / \boldsymbol{\Lambda}$ by the isomorphism π

$$
\begin{aligned}
& \pi: \mathbb{C} / \Lambda \rightarrow E(\mathbb{C}) \\
& z \mapsto\left(\wp(z), \wp^{\prime}(z)\right)
\end{aligned}
$$

where \wp denotes the Weierstrass \wp function defined by a lattice Λ. So the real locus $E(\mathbb{R})$ can be identified as a subset of F. For convenience we can further identify F with the unit square

$$
I=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq x, y \leq 1\right\}
$$

on the Euclidean plane.
Consider the polynomial $f(x)=4 x^{3}-g_{2} x-g_{3}$ which is the right side of the defining equation. If $f(x)$ has three distinct real roots $e_{3}<e_{2}<e_{1}$, that is $\Delta>0$, then we may take

$$
\omega_{1}=\frac{\pi}{M\left(\sqrt{e_{1}-e_{3}}, \sqrt{e_{1}-e_{2}}\right)}, \omega_{2}=\frac{i \pi}{M\left(\sqrt{e_{1}-e_{3}}, \sqrt{e_{2}-e_{3}}\right)}
$$

where $M(a, b)$ denotes the arithmetic-geometric mean defined by Gauss. In this case, ω_{1} is positive real and ω_{2} is imaginary and $\operatorname{Im}\left(\omega_{2}\right)>0$ since $e_{3}<e_{2}<e_{1}$. If $f(x)$ has only one real root, e and two complex roots, that is $\Delta<0$ we may take

$$
\omega_{1}=\frac{2 \pi}{M(2 \sqrt{\beta}, \sqrt{2 \beta+\alpha})}, \omega_{2}=-\frac{\omega_{1}}{2}+\frac{i \pi}{M(2 \sqrt{\beta}, \sqrt{2 \beta-\alpha})} .
$$

where $\alpha=3 e$ and $\beta=\sqrt{3 e^{2}-\frac{g_{2}}{4}}$. In this case ω_{1} is also positive real and $\operatorname{Im}\left(\omega_{2}\right)>$ $0, \operatorname{Re}\left(\omega_{2}\right)=-\frac{1}{2} \omega_{1}$ since $\beta>0$ and $2 \beta \pm \alpha>0$.

Without loss of generality, we may assume that $0=\operatorname{Arg}\left(\omega_{1}\right)<\operatorname{Arg}\left(\omega_{2}\right)<\pi$. Schneider showed that ω_{1} and ω_{2} are both transcendental numbers. He also showed that the quotient ω_{1} / ω_{2} is either a transcendental or an imaginary quadratic irrational. In the latter case E has complex multiplication.

Our aim in this paper is to study the distribution of the rational points $E(\mathbb{Q})$ inside the real locus $E(\mathbb{R})$. More precisely, we are interested in the question whether $E(\mathbb{Q})$ is dense in $E(\mathbb{R})$ in the Euclidean topology when $E(\mathbb{Q})$ has positive rank. In a similar fashion one might ask whether the sequence of rational points $[n] P, n=0, \pm 1, \pm 2, \pm 3, \cdots$, is uniformly distributed inside $E(\mathbb{R})$ under the metric given by the invariant differential

$$
\omega=\frac{d x}{2 y}=\frac{d x}{\sqrt{4 x^{3}-g_{2} x-g_{3}}}
$$

when P is a non-torsion point of $E(\mathbb{Q})$. The above question is equivalent to whether the set $\left\{n \pi^{-1}(P) \mid n=0, \pm 1, \pm 2, \cdots\right\}$ is uniformly distributed inside the inverse image of $\pi^{-1}(E(\mathbb{R}))$ under the usual Euclidean topology.
$E(\mathbb{R})$ has either two or one connected components depending on whether the cubic
equation

$$
4 x^{3}-g_{2} x-g_{3}=0
$$

on the right side of the defining equation has three distinct real roots(if and only if $\Delta(E)=g_{2}^{3}-27 g_{3}^{2}>0$) or one real root(if and only if $\left.\Delta(E)=g_{2}^{3}-27 g_{3}^{2}<0\right)$. We will call the (possibly two) component(s) by finite component and infinite component depending upon whether the Euclidean length of the component is finite or infinite. Let P be a non-torsion point of $E(\mathbb{Q})$ corresponding to

$$
\alpha_{1} \omega_{1}+\alpha_{2} \omega_{2}
$$

in $\mathbb{C} / \Lambda\left(\right.$ or to $\left(\alpha_{1}, \alpha_{2}\right)$ in $\left.I\right)$. Then α_{1} and α_{2} can not be both rational, since otherwise P will be a torsion point. Kronecker's classical theorem on simultaneous Diophantine approximation is as follows: If $1, \alpha_{1}, \cdots$, and α_{k} are linearly independent over the rationals \mathbb{Q}, then the set

$$
\left\{\left(\left\{n \alpha_{1}\right\},\left\{n \alpha_{2}\right\}, \cdots,\left\{n \alpha_{k}\right\}\right) \mid n \in \mathbb{Z}\right\}
$$

is dense in the k-dimensional unit box $[0,1]^{k}$ where $\{x\}=x-[x]$ denotes the fractional part of x. So Kronecker's theorem tells that the numbers $1, \alpha_{1}$, and α_{2} can not be linearly independent over the rationals \mathbb{Q}, since otherwise the sequence S,

$$
S=\{[n] P \mid n=0, \pm 1, \pm 2, \pm 3, \cdots\} \subseteq E(\mathbb{Q})
$$

will be dense in the whole $E(\mathbb{C})$. Hence we have an equation

$$
r+s \alpha_{1}+t \alpha_{2}=0
$$

for some relatively prime integers r, s, and t which are not zeroes simultaneously.
Computing α_{1} and α_{2} is called the elliptic logarithm problem. And it is possible to compute α_{1} and α_{2} to any prescribed precision for any elliptic curve with a non-torsion point P.

Algorithm 1. For a given elliptic curve $E: y^{2}=f(x)=4 x^{3}-g_{2} x-g_{3}$, and $P=(x, y)$ be a non-torsion point of $E(\mathbb{Q})$, we calculate the given sufficiently accurate approximation of the inverse image z of $\pi^{-1}(P)$.

- CASE $1: \Delta(E)>0$ and $e_{3}<e_{2}<e_{1}$ are real roots of $f(x)$.

1. Set $a_{1}=\sqrt{e_{1}-e_{3}}, b_{1}=\sqrt{e_{1}-e_{2}}$.
2. If P is contained in the finite component, that is $e_{3}<x<e_{2}$

$$
\lambda=\frac{y}{\left(x-e_{3}\right)}, X=\frac{\lambda^{2}}{4}-x-e_{3}
$$

Otherwise $X=x$. Finally set $c_{1}=\sqrt{X-e_{3}}$.
3. Compute $a_{n+1}=\frac{1}{2}\left(a_{n}+b_{n}\right), b_{n+1}=\sqrt{a_{n} b_{n}}, c_{n+1}=\frac{1}{2}\left(c_{n}+\sqrt{c_{n}^{2}+b_{n}^{2}-a_{n}^{2}}\right)$.
4. If $a=\lim a_{n}, c=\lim c_{n}$ then

$$
z= \begin{cases}\frac{1}{a} \sin ^{-1}\left(\frac{a}{c}\right), & \text { if } y \geq 0 \text { and } x \geq e_{1} \\ \omega_{1}-\frac{1}{a} \sin ^{-1}\left(\frac{a}{c}\right), & \text { if } y<0 \text { and } x>e_{1} \\ \frac{1}{a} \sin ^{-1}\left(\frac{a}{c}\right)+\frac{1}{2} w_{2}, & \text { if } y<0 \text { and } e_{3}<x<e_{2} \\ \omega_{1}-\frac{1}{a} \sin ^{-1}\left(\frac{a}{c}\right)+\frac{1}{2} w_{2}, & \text { if } y \geq 0 \text { and } e_{3}<x \leq e_{2}\end{cases}
$$

- CASE $2: \Delta(E)<0$ and e is the unique real root of $f(x)$.

1. Set $\alpha=3 e, \beta=\sqrt{3 e^{2}-\frac{g_{2}}{4}}, a_{1}=2 \sqrt{\beta}, b_{1}=\sqrt{2 \beta+\alpha}, c_{1}=\frac{(x-e+\beta)}{\sqrt{x-e}}$
2. Compute $a_{n+1}=\frac{1}{2}\left(a_{n}+b_{n}\right), b_{n+1}=\sqrt{a_{n} b_{n}}, c_{n+1}=\frac{1}{2}\left(c_{n}+\sqrt{c_{n}^{2}+b_{n}^{2}-a_{n}^{2}}\right)$.
3. If $a=\lim a_{n}, c=\lim c_{n}$ then

$$
z= \begin{cases}\frac{1}{a} \sin ^{-1}\left(\frac{a}{c}\right), & \text { if } y<0 \text { and }(x-e)^{2}-\beta^{2}>0 \\ \frac{1}{2} \omega_{1}-\frac{1}{a} \sin ^{-1}\left(\frac{a}{c}\right), & \text { if } y<0 \text { and }(x-e)^{2}-\beta^{2} \leq 0, \text { or } y=0 \\ \frac{1}{2} \omega_{1}+\frac{1}{a} \sin ^{-1}\left(\frac{a}{c}\right), & \text { if } y>0 \text { and }(x-e)^{2}-\beta^{2}<0 \\ \omega_{1}-\frac{1}{a} \sin ^{-1}\left(\frac{a}{c}\right), & \text { if } y>0 \text { and }(x-e)^{2}-\beta^{2} \geq 0\end{cases}
$$

By the above algorithm, we can decide the distribution of S. Case 1 : Assume that $\Delta(E)>0$ and P is a non-torsion point of $E(\mathbb{Q})$. Let

$$
V=\left\{\alpha_{1} \omega_{1} \mid 0 \leq \alpha_{1} \leq 1\right\}
$$

Then $\pi^{-1}(E(\mathbb{R}))=V \cup V+\frac{1}{2} \omega_{2}$ and V is the inverse image of the infinite component. If P is contained in the infinite component, then $z=\alpha_{1} \omega_{1}$ for some irrational number α_{1} since P is non-torsion. Hence $\pi^{-1}(S) \subset V$ and it is dense in V. Moreover it is uniformly distributed. Therefore S is dense in the infinite component and uniformly distributed.
If P is contained in the finite component, then $z=\alpha_{1} \omega_{1}+\frac{1}{2} \omega_{2}$ for some irrational number α_{1} since P is non-torsion. In this case $\{2 k z / \Lambda \mid k \in \mathbb{Z}\}$ is dense in V and $\{(2 k-1) z / \Lambda \mid k \in \mathbb{Z}\}$ is dense in $V+\frac{1}{2} \omega_{2}$. And they are uniformly distributed respectively. Therefore S is dense in the whole component of $E(\mathbb{R})$ and uniformly distributed. In particular $\{[2 k] P \mid k \in \mathbb{Z}\}$ is dense in the infinite component and $\{[2 k-1] P \mid k \in \mathbb{Z}\}$ is dense in the finite component.

Case 2 : Assume that $\Delta(E)<0$ and P is a non-torsion point of $E(\mathbb{Q})$. Then $\pi^{-1}(E(\mathbb{R}))=V$ and $z=\alpha_{1} \omega_{1}$ for some irrational number α_{1} since P is non-torsion. Since $\{k z / \Lambda \mid k \in \mathbb{Z}\}$ is dense in V and uniformly distributed, S is dense in $E(\mathbb{R})$ and uniformly distributed.

So we get
Proposition 2. Suppose that E / \mathbb{Q} is an elliptic curve defined over the rationals, P is a non-torsion rational point of E. Then the set S is dense in the component of $E(\mathbb{R})$ which contains the infinity and uniformly distributed.

Example. Let $E: y^{2}=4 x^{3}-624 x+2240$ and $P_{1}=(13,54), P_{2}=(2,32) \in E(\mathbb{Q})$, hence P_{1} is contained in the infinite component and P_{2} is contained the finite component.

Figure 1. $E: y^{2}=4 x^{3}-624 x+2240$

Figure 2. [$n] P_{1}$ points $(1 \leq n \leq 140)$

Figure 3. [2n-1] P_{2} points $(1 \leq n \leq 51)$

Figure 4. [2n] P_{2} points $(1 \leq n \leq 50)$

Figure 5. [$n] P_{2}$ points $(1 \leq n \leq 101)$

References

[1] H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993.
[2] A. Knapp, Elliptic Curves, Princeton University Press, 1992.
[3] J. Silverman, The Arithmetic of Elliptic Curves,Springer-Verlag, 1986.
[4] A. Schidlovski ,Transcendental Numbers, Walter de Gruyter, 1989.
[5] R. Tijdeman , On the Gel'fond-Baker method and its applications , Proc. Sympo. Pure Math. 28(1976), 242-268.

Department of Mathematics
KAIST
Taejon, 305-701 KOREA
E-mail: sghahn@mathx.kaist.ac.kr
National Security Research Institute (NSRI)
Taejon 305-350, KOREA
e-mail : dlee@etri.re.kr

