• Title/Summary/Keyword: S-K Constitutive Equation

Search Result 79, Processing Time 0.025 seconds

Numerical Fatigue Test Method Based on Continuum Damage Mechanics (연속체 손상역학을 이용한 수치 피로시험 기법)

  • Lee, Chi-Seung;Kim, Young-Hwan;Kim, Tae-Woo;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.63-69
    • /
    • 2007
  • Once assessment of material failure characteristics is captured precisely in a unified way, it can bedirectly incorporated into the structural failure assessment under various loading environments, based on the theoretical backgrounds so called Local Approach to Fracture. The aim of this study is to develop a numerical fatigue test method by continuum damage mechanics applicable for the assessment of structural integrity throughout crack initiation and structural failure based on the Local Approach to Fracture. The generalized elasto-visco-plastic constitutive equation, which can consider the internal damage evolution behavior, is developed and employed in the 3-D FEA code in order to numerically evaluate the material and/or structural responses. Explicit information of the relationships between the mechanical properties and material constants, which are required for the mechanical constitutive and damage evolution equations for each material, are implemented in numerical fatigue test method. The material constants selected from constitutive equations are used directly in the failure assessment of material and/or structures. The performance of the developed system has been evaluated with assessing the S-N diagram of stainless steel materials.

Hot Deformation Behavior of AISI 4340 using Constitutive Model and Processing Map (구성 모델과 공정 지도를 이용한 AISI 4340강의 고온 변형 거동)

  • Kim, Keunhak;Jung, Minsu;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.187-196
    • /
    • 2017
  • High temperature flow behaviors of AISI 4340 steel were investigated using isothermal compression tests under the temperature range from 850 to $1100^{\circ}C$ and a strain rate from 0.01 to $10s^{-1}$. The flow stress decreased with increasing compression temperature and decreasing strain rate. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrheniustyped equation with the Zener-Hollomon parameter was used to simulate the hot deformation behavior of AISI 4340 steel. The modification of the Zener-Hollomon parameter and lnA parameter resulted in the improvement of the calculation accuracy of the proposed constitutive model compared with the experimental flow curves. In addition, the process map of AISI 4340 steel was proposed. The instable process condition for hot deformation was predicted and its reliability was verified with the experimental observation.

The Wave Propagation in transversely isotropic composite laminates (가로 등방성 복합재료의 파동전파에 관한 연구)

  • Kim Hyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.422-425
    • /
    • 2005
  • In an transversely isotropic composite laminates, the velocities, the particle directions and the amplitudes of reflected and transmitted waves were obtained using the equation of motion, the constitutive equation, and the displacement equation expressed by wave number and frequency Eigenvalue problem involving a velocity was solved by Snell's law. Finally, the results were confirmed by T300 Carbon fiber/5208 Epoxy materials. This approach could be applied to the detection of flaws in a transversely isotropic composite laminates by the water immersion C-scan procedure.

  • PDF

Development of MLS Difference Method for Material Nonlinear Problem (MLS차분법을 이용한 재료비선형 문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • This paper presents a nonlinear Moving Least Squares(MLS) difference method for material nonlinearity problem. The MLS difference method, which employs strong formulation involving the fast derivative approximation, discretizes governing partial differential equation based on a node model. However, the conventional MLS difference method cannot explicitly handle constitutive equation since it solves solid mechanics problems by using the Navier's equation that unifies unknowns into one variable, displacement. In this study, a double derivative approximation is devised to treat the constitutive equation of inelastic material in the framework of strong formulation; in fact, it manipulates the first order derivative approximation two times. The equilibrium equation described by the divergence of stress tensor is directly discretized and is linearized by the Newton method; as a result, an iterative procedure is developed to find convergent solution. Stresses and internal variables are calculated and updated by the return mapping algorithm. Effectiveness and stability of the iterative procedure is improved by using algorithmic tangent modulus. The consistency of the double derivative approximation was shown by the reproducing property test. Also, accuracy and stability of the procedure were verified by analyzing inelastic beam under incremental tensile loading.

Microscopic Modeling of Creep Behavior for Soils (지반 크리프 거동의 미시학적 모델링)

  • Kim Dae-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.409-413
    • /
    • 2006
  • The accumulated deformation due to the undrained creep causes the general stability problem for the overall soil mass. In this study, the time-dependent constitutive equation, into which a damage law, modified cam clay model, and Perzyna's generalized viscous theory were incorporated, was derived microscopically. The model prediction agreed well with the experimental result including the case of the undrained creep rupture.

  • PDF

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad;Simyari, Mahdi;Hosseini, Seyed A.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.157-172
    • /
    • 2020
  • The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.

Dynamic analysis of a transversely isotropic non-classical thin plate

  • Fadodun, Odunayo O.;Borokinni, Adebowale S.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Wind and Structures
    • /
    • v.25 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • This study investigates the dynamic analysis of a transversely isotropic thin plate. The plate is made of hyperelastic John's material and its constitutive law is obtained by taken the Frechect derivative of the highlighted energy function with respect to the geometry of deformation. The three-dimensional equation governing the motion of the plate is expressed in terms of first Piola-Kirchhoff's stress tensor. In the reduction to an equivalent two-dimensional plate equation, the obtained model generalizes the classical plate equation of motion. It is obtained that the plate under consideration exhibits harmonic force within its planes whereas this force varnishes in the classical plate model. The presence of harmonic forces within the planes of the considered plate increases the natural and resonance frequencies of the plate in free and forced vibrations respectively. Further, the parameter characterizing the transversely isotropic structure of the plate is observed to increase the plate flexural rigidity which in turn increases both the natural and resonance frequencies. Finally, this study reinforces the view that non-classical models of problems in elasticity provide ample opportunity to reveal important phenomena which classical models often fail to apprehend.

Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdraboh, Azza M.;Abdalla, Waleed S.;Alshorbagy, Amal E.
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.219-228
    • /
    • 2020
  • This work presents a modified continuum model to explore and investigate static and vibration behaviors of perforated piezoelectric NEMS structure. The perforated nanostructure is modeled as a thin perforated nanobeam element with Euler-Bernoulli kinematic assumptions. A size scale effect is considered by included a nonlocal constitutive equation of Eringen in differential form. Modifications of geometrical parameters of perforated nanobeams are presented in simplified forms. To satisfy the Maxwell's equation, the distribution of electric potential for the piezoelectric nanobeam model is assumed to be varied as a combination of a cosine and linear functions. Hamilton's principle is exploited to develop mathematical governing equations. Modified numerical finite model is adopted to solve the equation of motion and equilibrium equation. The proposed model is validated with previous respectable work. Numerical investigations are presented to illustrate effects of the number of perforated holes, perforation size, nonlocal parameter, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric nanobeams.

Comparative Study of Bifurcation Behavior of Rubber in Accordance with the Constitutive Equations (구성방정식에 따른 고무 분기점 거동 비교 연구)

  • Park, Moon-Shik;Song, Seung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.731-742
    • /
    • 2010
  • Modeling of rubber for design or analysis often requires confusing or complex work because there are a large number of constitutive models to be considered. Some models have few material constants, while others have many. Researchers have to prepare and fit extensive experimental data with caution and discretion. In this paper, we first compared some typical rubber models in which deformation was carried out by stretching up to around eight times the original size. We conclude that continuum-based models and chain molecular models can be used in the study of the small deformation in most engineering applications, but chain molecular models are preferred in the study of the large deformations in most biomaterial applications. As discrimination problems, Treloar's patch and cylindrical balloon stick are tested theoretically and numerically for studying bifurcation. In the case of Treloar's patch, by using the Kearsley's equation, we show that bifurcation exists for continuum-based models but not for chain molecular models. Both models show bifurcation in the cylindrical balloon stick. Therefore, in the analysis of the bifurcation of rubber showed that its existence also depends on the constitutive model selected.

Flow-Induced Birefringence of Polymers in the Region of Abrupt Thickness Transition (두께가 급격히 변하는 영역에서 고분자 유동에 의한 복굴절)

  • Lee, H.S.;Isayev, A.I.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.20-25
    • /
    • 2009
  • A finite element analysis was carried out for a 4:1 planar contraction die for polymer melts using the viscoelastic constitutive equation of Leonov. Viscoelastic fluids showed significant differences in pressure drop and birefringence in contraction and expansion flows. The pressure drop was higher and the birefringence smaller in expansion than in contraction flow. The difference increased with increasing flow rate. The nonlinear Leonov model was shown to describe the viscoelastic effects observed in experiments.