• 제목/요약/키워드: S-Glass

검색결과 2,850건 처리시간 0.033초

직물형 유리섬유/에폭시 복합재료로 피막된 판유리의 미소강구 충격에 의한 표면파괴거동 (Surface Fracture Response of Glass Eabric/Epoxy Lamina-Bonded Glass Plates to Impact with a Small-Diameter Steel Ball)

  • 김형구;최낙삼
    • Composites Research
    • /
    • 제13권4호
    • /
    • pp.75-82
    • /
    • 2000
  • 유리섬유/에폭시 복합재료로 피막한 유리판의 표면파괴거동을 연구하기 위하여 미소강구 충격실험을 수행하였다. 본 연구에서는 다섯 종류의 재료, 단순소다유리판(soda-lime glass plates), 유리섬유/에폭시박막(glass/epoxy lamina)을 1층 접착, 비접착한 시편과 박막을 3층 접착, 비접착한 시편을 사용하였다. 충격속도 범위 40∼120m/s에서 유리판 배면에서의 최대 응력과 흡수파괴에너지를 측정하였다. 충격 속도증가에 따라 링균열, 콘균열, 레이디얼 균열이 시편 내부에서 발생하였다. 복합재료 박막으로 피막한 결과, 소다유리판의 균열은 현저히 감소하였으며 측정한 최대 응력과 흡수파괴에너지를 이용하여 표면 파괴거동 특성을 평가할 수 있었다.

  • PDF

순차이송 GMP 공정에서의 비구면 유리렌즈 성형 해석에 관한 연구 (Study on the Aspheric Glass Lens Forming Simulation in the Progressive GMP process)

  • 장성호;강정진;신광호;정우철;허영무;정태성
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.539-542
    • /
    • 2008
  • Recently, GMP(Glass Molding Press) process is mainly used to produce aspheric glass lenses. Because glass lens is heated at high temperature above Ty (yielding point) for forming glass, the quality of aspheric glass lens is deteriorated by residual stresses which are generated in a aspheric glass lens after forming. Before this study, as a fundamental study to develop forming conditions for progressive GMP process, compression, strain relaxation and thermal conductivity tests were carried out to obtain the visco-rigid plastic, the visco-elastic and thermal properties of K-PBK40 which is newly developed and applied for precision molding glass material, In this study, using the experimental results we obtained, a glass lens forming simulation in progressive GMP process was carried out and we could forecast the shape of deformed glass lenses and residual stresses contribution in the structure of deformed glass lenses after forming.

  • PDF

Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

  • Kim, Dongsang
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.92-102
    • /
    • 2015
  • Current plans for legacy nuclear wastes stored in underground tanks at the U.S. Department of Energy's Hanford Site in Washington are that they will be separated into high-level waste and low-activity waste fractions that will be vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of these nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. Property models with associated uncertainties combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification process control and waste-form qualification at the planned waste vitrification plant. This paper provides an overview of the current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford Site.

ZnS 반도체 미립자 분산 Borosilicate Glass 제조 및 물성(I) (Preparationand Characteristics of ZnS-doped Borosilicate Glass(I))

  • 이승한;박성수;박희찬;류봉기
    • 한국세라믹학회지
    • /
    • 제35권5호
    • /
    • pp.493-498
    • /
    • 1998
  • ZnS doped borosilicate glass for nonlinear optical application was prepared by melting and precipitation process. The optical band gap of the precipitated ZnS particles ranged from 3.83 to 3.96 eV compared with the bulk ZnS energy gap of 3.53 eV. This result was interpreted in terms of a quantum confinement effect due to small crystal size. ZnS partilcle size estimated by effective mass approximation ranged from about 39 to 83 $\AA$ It increased wtih the increase of heat tratment time and temperature.

  • PDF

The Effects of pH and Buffer Materials on the Leaching of Simulated Waste Glass

  • Kim, S.S.;Kim, J.G.;Kim, J.S.;Chun, K.S.;Lee, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.1-7
    • /
    • 1998
  • Effects of pH, bentonite and Portland cement on the leaching of the simulated waste glass were investigated. The simulated waste glass showed the low leach rate in the neutral pH region, while the leach rate in both acidic and alkaline regions increased. Addition of bentonite to the leachant enhanced the leaching of the waste glass. When the waste glass was leached at 72$^{\circ}C$ for 36 days in the ground water with gel state Na-bentonite, approximately 2.2${\mu}{\textrm}{m}$ of the surface was corroded out and the large amount of Ti, Nd, and Zr was observed on the surface. The amount of B leached from the simulated waste glass in the presence of domestic bentonite was about three times higher than that in the presence of Aldrich bentonite as well as Portland cement.

  • PDF

Sulfamerazine-Sugar Glass Dispersion의 용출속도에 관한 연구 (The Effect on the Dissolution Rate of Sulfamerazine from Sugar Glass Dispersion System)

  • 구영순;성경수
    • 약학회지
    • /
    • 제34권3호
    • /
    • pp.192-198
    • /
    • 1990
  • Three sugar glass dispersions of sulfamerazine were prepared using dextrose, galactose and sucrose as the carriers, with the ratio of the drug to the carrier was 1:9. The chemical stability of sulfamerazine in the glass dispersion system was studied using TLC. TLC revealed no additional spot and there was good correspondence with the Sulfamerazine itself. While time required to dissolve 50%($T_{50%}$) of sulfamerazine powder was 390 min that of dextrose glass dispersion system was 1.5 min. and galactose system was 4.0 min. in distilled water. 23) $T_{50%}$ of physical mixture with dextrose, galactose and sucrose were 26.4 min., 26.5 min., and 26.0 min. respectively in distilled water. $T_{50%}$ of control was 54 min. and those of all of the glass dispersion systems were within 1 min. in 0.1N HCl. The dissolution rates of sulfamerazine from sugar glass dispersion system in distilled water was greater than that in 0.1N HCl.

  • PDF

마이크로 칩 전기영동에 응용하기 위한 다결정 실리콘 층이 형성된 마이크로 채널의 MEMS 가공 제작 (MEMS Fabrication of Microchannel with Poly-Si Layer for Application to Microchip Electrophoresis)

  • 김태하;김다영;전명석;이상순
    • Korean Chemical Engineering Research
    • /
    • 제44권5호
    • /
    • pp.513-519
    • /
    • 2006
  • 본 연구에서는 유리(glass)와 석영(quartz)을 재질로 사용하여 MEMS(micro-electro mechanical systems) 공정을 통해 전기영동(electrophoresis)을 위한 microchip을 제작하였다. UV 광이 실리콘(silicon)을 투과하지 못하는 점에 착안하여, 다결정 실리콘(polycrystalline Si, poly-Si) 층을 채널 이외의 부분에 증착시킨 광 차단판(optical slit)에 의해 채널에만 집중된 UV 광의 신호/잡음비(signal-to-noise ratio: S/N ratio)를 크게 향상시켰다. Glass chip에서는 증착된 poly-Si 층이 식각 마스크(etch mask)의 역할을 하는 동시에 접합표면을 적절히 형성하여 양극 접합(anodic bonding)을 가능케 하 였다. Quartz 웨이퍼에 비해 불순물을 많이 포함하는 glass 웨이퍼에서는 표면이 거친 채널 내부를 형성하게 되어 시료용액의 미세한 흐름에 영향을 미치게 된다. 이에 따라, HF와 $NH_4F$ 용액에 의한 혼합 식각액(etchant)을 도입하여 표면 거칠기를 감소시켰다. 두 종류의 재질로 제작된 채널의 형태와 크기를 관찰하였고, microchip electrophoresis에 적용한 결과, quartz과 glass chip의 전기삼투 흐름속도(electroosmotic flow velocity)가 0.5와 0.36 mm/s로 측정되었다. Poly-Si 층에 의한 광 차단판의 존재에 의해, peak의 S/N ratio는 quartz chip이 약 2배 수준, glass chip이 약 3배 수준으로 향상되었고, UV 최대흡광 감도는 각각 약 1.6배 및 1.7배 정도 증가하였다.

Effects of Chemical Etching with Sulfuric Acid on Glass Surface

  • Jang, H.K.;Chung, Y.L.;S.W.Whangbo;C.N.Whang;Lee, S.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.165-165
    • /
    • 2000
  • Glass slides were chemically etched with sulfuric acid using five different methods. we investigated the effects of the chemical etching conditions on such properties as chemical composition, surface roughness, and the thermal stability of the glass. Sodium and carbon atoms in the surface of the glass are effectively eliminated by chemical etching with sulfuric acid. The glass slides were boiled for 30 min in 95% sulfuric acid and were depth profiled at room temperature with X-ray photoelectron spectroscopy (XPS), the Na ls signal was not detected in the detection limit of XPS. Surface morphology of the glass was very different depending on the concentration of sulfuric acid. The surface of the glass etched with 50% sulfuric acid was rougher than that of glass etched with 95% sulfuric acid. The sodium concentration of the glass boiled for 30 min in 95% sulfuric acid was nearly zero at the glass surface, and the sodium composition changed very little with annealing temperatures up to 35$0^{\circ}C$ in a vacuum environment. However the sulfur concentration at the glass surface due to the sulfuric acid increased with increasing temperature.

  • PDF

희토류 첨가 광소재의 나노구조 : Dy 첨가 Ge-As-S 유리의 X-선 흡수 스펙트럼 분석 (Nanostructure of Optical Materials Doped with Rare-Earths: X-Ray Absorption Spectroscopy of Dy-Doped Ge-As-S Glass)

  • 최용규;송재혁;신용범;;허종
    • 한국세라믹학회지
    • /
    • 제43권3호
    • /
    • pp.177-184
    • /
    • 2006
  • Dy $L_3$-edge XANES and EXAFS spectra of chalcogenide Ge-As-S glass doped with ca. 0.2 wt% dysprosium have been investigated along with some reference Dy-containing crystals. Amplitude of the white-line peak in XANES spectrum of the glass sample turns out to be stronger than that of other reference crystals, i.e., $DY_2S_3,\;Dy_2O_3\;and\;DyBr_3$. It has been verified from the Dy $L_3$-edge EXAFS spectra that a central Dy atom is surrounded by $6.7{\pm}0.5$ sulfur atoms in its first coordination shell in the Ge-As-S glass, which is relatively smaller than 7.5 of the $Dy_2S_3$ crystal. Averaged Dy-S inter-atomic-distance of the glass ($2.78{\pm}0.01{\AA}$) also turns out to be somewhat shorter than that of the $Dy_2S_3$ crystal ($2.82{\pm}0.01{\AA}$). Such nanostructural changes occurring at Dy atoms imply there being stronger covalency of Dy-S chemical bonds in the Ge-As-S glass than in the crystal counterpart. The enhanced covalency in the nanostructural environment of $Dy^{3+}$ ions inside the glass would then be responsible for optical characteristics of the $4f{\leftrightarrow}4f$ transitions of the dopants, i.e., increase of oscillator strengths and spontaneous radiative transition probabilities.