• Title/Summary/Keyword: S cerevisiae

Search Result 926, Processing Time 0.025 seconds

Studies on the cellular metabolism in microorganisms as influenced by gamma-irradiation.(IV) "on the carbohydrate metabolism of yeast irradiated by $\gamma$-ray." (미생물의 세포생리에 미치는 전이방사선의 영향에 관한 연구 (제 4 ) -효모균의 수화물대 에 대한 $\gamma$-의 영향에 대하여-)

  • 김종협
    • Korean Journal of Microbiology
    • /
    • v.6 no.2
    • /
    • pp.41-53
    • /
    • 1968
  • Studies on the carbohydrate metabolism of yeast as influenced by gamma-irradiation from cobalt-60 have been carried, then the mechanisms of radiation effect on respiration and fermentation were discussed under considerations of permeable changes of irradiated cell membrane. The cells of baker's yeast (Saccharomyces cerevisiae) which had been gamma-irradiated of 240 k.r. doses for an hour, then were put into aerobic oxidation and anaerobic fermentation without substrate. Total and fractionated carbohydrates of irradiated yeast cells were determined by calorimetric method with anthrone and orcinol reagents, the amounts of total carbohydrate, trehalose, RNA-ribose, PCA-soluble glycogen, alkali-soluble glycogen, acetic acid-soluble glycogen, mannan and glucan were determined according to the course of aerobic oxidation and anaerobic fermentation. It is found that the carbohydrates of irradiated cells leak out and amount of the losses teaches eleven times more than that of control, the volume of losses are seems to be replaced by water, it can be suggested the damage of gamma-irradiation occurs in the site of passive transport of cell membrane. The endogeneous aerobic respiration of irradiated cells are increased much more than control, the synthesis of reserve glycogen, glucan and RNA-ribose promoted much more than control. The anaerobic fermentation of irradiated cells are also increased than that of control, but the breakdown of carbohydrate is less than endogeneous respiration of irradiated cells. The synthetic rate is also less than that of aerobic oxidation. In irradiated yeast cells, trehalose is revealed to be primary substrate for endogeneous carbohydrate metabolism, so it is proved that the enzymic patterns are not changed but the activities of enzymes relating endogeneous respiration and autofermentation is activated. It is to be considerable to distiguish endogeneous respiration and autofermentation from exogeneous respiration and fermentation on irradiation, for membrane permeability changes and loses out carbohydrate by ionizing radiation.

  • PDF

Characterization of Yakju Brewed from Glutinous Rice and Wild-Type Yeast Strains Isolated from Nuruks

  • Kim, Hye-Ryun;Kim, Jae-Ho;Bae, Dong-Hoon;Ahn, Byung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1702-1710
    • /
    • 2010
  • Korean traditional rice wines yakju and takju are generally brewed with nuruk as the source of the saccharogenic enzymes by natural fermentation. To improve the quality of Korean rice wine, the microorganisms in the nuruk need to be studied. The objective of this research was to improve the quality of Korean wine with the wild-type yeast strains isolated from the fermentation starter, nuruk. Only strain YA-6 showed high activity in 20% ethanol. Precipitation of Y89-5-3 was similar to that of very flocculent yeast (>80%) at 75.95%. Using 18S rRNA sequencing, all 10 strains were identified as Saccharomyces cerevisiae. Volatile compounds present in yakju were analyzed by gas chromatography-mass selective detector. The principal component analysis (PCA) of the volatile compounds grouped long-chain esters on the right side of the first principal component, PC1; these compounds were found in yakju that was made with strains YA-6, Y89-5-3, Y89-5-2, Y90-9, and Y89-1-1. On the other side of PC1 were short-chain esters; these compounds were found in wines that were brewed with strains Y183-2, Y268-3, Y54-3, Y98-4, and Y88-4. Overall, the results indicated that using different wild-type yeast strains in the fermentation process significantly affects the chemical characteristics of the glutinous rice wine.

Protectors of Oxidative Stress Inhibit AB(1-42) Aggregation in vitro

  • Kong, Byung-Mun;Ueom, Jeong-Hoon;Kim, In-Kyung;Lim, Dong-Yeol;Kang, Jong-Min;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1773-1777
    • /
    • 2002
  • Reactive oxygen species(ROS) have been investigated to have pivotal roles on amyloidogenecity of $\beta-amyloidpeptide(A\beta)$, the major component of senile plaques in Alzheimer's disease(AD) brain. Addition of radical scavengers is one of the on-going strategies for therapeutic treatment for AD patients. Hsp104 protein including two ATP binding sites from Saccharomyces cerevisiae, as a molecular chaperone, was known to function as a protector of ROS generation when exposed to oxidative stress in our previous study. This observation has led us to investigate Hsp104 protein as a molecular mediator of $A{\beta}$ aggregation in this study. We have developed a new way of expression for Hsp104 protein using GST-fusion tag. As we expected, formation of $A{\beta}$ aggregate was protected by wild type Hsp104 protein, but not by the two ATP-binding site mutant, based on Thioflavin-T fluorescence. Interestingly, Hsp104 protein was observed to keep $A{\beta}$ from forming aggregates independent of ATP binding. On the other hand, disaggregation of $A{\beta}$ aggregates by wild type Hsp104 was totally dependent on the presence of ATP. On the other hand, mutant Hsp104 with two ATP binding sites altered exhibited no inhibition. Another effective antioxidant, hydrazine analogs of curcumin were also effective in $A{\beta}$ fibrilization as protectors against oxidative stress. Based on these observations we conclude that Hsp104 and curcumin derivatives, as protectors of oxidative stress, inhibit $A{\beta}$ aggregation in virto and can be candidates for therapeutic approaches in cure of some neurodegenerative disease.

Transformation of Brassica napus with Acid Phosphatase Gene (Acid Phosphatase 유전자 도입에 의한 유채의 형질 전환)

  • Lee, Hyo-Shin;Son, Dae-Young;Jo, Jin-Ki
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.17 no.3
    • /
    • pp.285-292
    • /
    • 1997
  • This study was conducted to obtain the transgenic Brnssica napus plants with tobacco Apase gene using the binary vector system of Agrobacteriurn fumefociens. The results obtained were summarized as follows: A repressible acid phosphatase gene of Saccharon~yces cerevisiae, pho105 was used for screening of tobacco Apase cDNA. In order to identify Apase gene in tobacco genome, Southern blot analysis was pcrformed and the Apase gcnc may be present as a single copy, or at most two or three copies, in tobacco genome. To isolate the tobacco Apase gene, tobacco cDNA library was constructed using purifed mRNA from -Pi treated tobacco root and the plaque forming unit of the library was 2.8 x $10^5$ pfu/m${\ell}$, therefore the library might cover all expressed mRNAs. Using pho5 as a probe. tobacco Apase cDNA was cloned, and restriction mapping and Southern blot analysis of cDNA insert were revealed that the 3.6 kb cDNA contained tobacco acid phosphatase cDNA. Plasmid pGA695 -tcAPl was constructed by subcloning tobacco Apase cDNA into the Hind site of pGA695 with 35s promoter which can be expressed constitutively in plants. The Brassica napus cotyledonary petioles were cocultivated with the ,4 grobacteriunz and transferred to the selection medium. The transformed and regenerated plants were transplanted to soil medium. Southern blot analysis was done on the transformed plants, and it was confirmed that a foregin gene was stably integrated into the genonies of B. nnpus plants.

  • PDF

Phosphorylation-Dependent Septin Interaction of Bni5 is Important for Cytokinesis

  • Nam, Sung-Chang;Sung, Hye-Ran;Kang, Seung-Hye;Joo, Jin-Young;Lee, Soo-Jae;Chung, Yeon-Bok;Lee, Chong-Kil;Song, Suk-Gil
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.227-233
    • /
    • 2007
  • In budding yeast, septin plays as a scaffold to recruits protein components and regulates crucial cellular events including bud site selection, bud morphogenesis, Cdc28 activation pathway, and cytokinesis. Phosphorylation of Bni5 isolated as a suppressor for septin defect is essential to Swe1-dependent regulation of bud morphogenesis and mitotic entry. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we provide evidence that Bni5 phosphorylation is important for interaction with septin component Cdc11 and for timely delocalization from septin filament at late mitosis. Phosphorylation-deficient bni5-4A was synthetically lethal with $hof1{\Delta}$. bni5-4A cells had defective structure of septin ring and connected cell morphology, indicative of defects in cytokinesis. Two-hybrid analysis revealed that bni5-4A has a defect in direct interaction with Cdc11 and Cdc12. GFP-tagged bni5-4A was normally localized at mother-bud neck of budded cells before middle of mitosis. In contrast, at large-budded telophase cells, bni5-4A-GFP was defective in localization and disappeared from the neck approximately 2 min earlier than that of wild type, as evidenced by time-lapse analysis. Therefore, earlier delocalization of bni5-4A from septin filament is consistent with phosphorylation-dependent interaction with the septin component. These results suggest that timely de localization of Bni5 by phosphorylation is important for septin function and regulation of cytokinesis.

Enhancement of Saccharification Yield of Ulva pertusa Kjellman by High Pressure Homogenization Process for Bioethanol Production (구멍갈파래의 고압 균질 전처리 공정을 통한 바이오에탄올 생산용 당화수율 증진)

  • Choi, Woon-Yong;Lee, Choon-Geun;Ahn, Ju-Hee;Seo, Yong-Chang;Lee, Sang-Eun;Jung, Kyung-Hwan;Kang, Do-Hyung;Cho, Jeong-Sub;Choi, Geun-Pyo;Lee, Hyeon-Yong
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.400-406
    • /
    • 2011
  • This study was investigated to improve the saccharification yield of Ulva pertusa Kjellman by the high pressure homogenization process. It was found that the high pressure homogenization pretreatment effectively destructed the cell wall structures only by using water. The high pressure homogenization process was operated under various conditions such as 10000, 20000 or 30000 psi with different recycling numbers. The optimal condition was determined as 30000 psi and 2 pass of recycling numbers and the sugar conversion yields were 16.02 (%, w/w) of glucose and 14.70 (%,w/w) of xylose, respectively. In the case of enzymatic treating the hydrolyzates with 5 FPU/glucan of celullase and 100 units/mL of amyloglucosidase, 65.8% of carbohydrates was converted into glucose. Using the hydrolysates of Ulva pertusa Kjellman, 48.7% of ethanol was obtained in the culture S.cerevisiae. These results showed that the high pressure homogenization process could efficiently hydrolyze the marine resource by using only water for bioethanol production.

Effect of a Fermented Rice Protein Residue on the Taste Property of Yeast Extract (쌀단백질 잔사발효물이 효모추출물의 맛특성에 미치는 영향)

  • Park, Gang-Seok;Han, Gwi-Jung;Chung, Ha-Yull
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.413-419
    • /
    • 2011
  • For producing a high added-value natural seasoning ingredient, a yeast extract (Yx) was supplemented with a rice protein residue fermented with Bacillus licheniformis (Rfl) or with Bacillus subtilis (Rfs). A rice protein residue was obtained after enzymatic hydrolysis of rice protein which was used for preparing a yeast culture medium. Overall acceptabilities of the supplemented yeast extracts (YxRfl or YxRfs) were higher compared to pure yeast extract. Savory taste like umami was found to increase noticeably by adding a fermented rice protein residue to yeast extract, which was confirmed in taste sensor analysis and in sensory test. Beyond the presence of savory tasting amino acids such as Glu and Asp in a fermented rice protein residue, it is assumed that other soluble peptide fractions remained play an important role in enhancing taste of the supplemented yeast extracts. Thus, the yeast extract added with a fermented rice protein residue could be applied to manufacture a natural seasoning ingredient.

Effect of Fermented Scutellariae Radix Extract on Production of Inflammatory Mediator in LPS-stimulated Mouse Macrophages (황금(黃芩) 발효 추출물이 LPS로 유발된 마우스대식세포에서 염증인자증가에 미치는 영향)

  • Yang, Hoi-Jeong;Han, Hyo-Sang;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.45-52
    • /
    • 2013
  • Objectives : This study aims at examining the immuno-modulating activity in the fermentative extract of the root of Scutellaria baicalensis Georgi (Scutellariae Radix) on the production of inflammatory mediator in LPS-stimulated RAW264.7 mouse macrophages. Method : Measurements were done for the influences on the cell viability, generation of hydrogen peroxide in cells and nitric oxide (NO) generation using the macrophage of mouse with the specimen SBS as the fermentative extract of Scutellariae Radix (SBS) with Saccharomyces cerevisiae STV89. Result : As a result of carrying out MTT assay to check the cellular toxicity of the fermentative extract of Scutellariae Radix, any excessive toxicity to the macrophage did not occur from treatments by concentration for SBS. SBS increased the generation of hydrogen peroxide in the macrophage. SBS suppressed the NO generated in macrophages and SBS concentration higher than $25{\mu}g/mL$ significantly suppressed the increased NO generated in LPS-stimulated macrophages. SBS concentration higher than $25{\mu}g/mL$ significantly suppressed the generation of IL-6, IL-10, IL-12p40 and MCP-1 in LPS-stimulated macrophages. Conclusion : Our findings indicate that SBS has an immuno-modulating activity in macrophage activation through suppressing the generation of inflammatory substances, NO, IL-6, IL-10, IL-12p40 and MCP-1.

A Study on the Making of Sweet Persimmon (Diospyros kaki, T) Wine (단감(Diospyros kaki, T) 와인 제조에 관한 연구)

  • Cho, Kye-Man;Lee, Jung-Bock;Kahng, Goon-Gjung;Seo, Weon-Taek
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.785-792
    • /
    • 2006
  • The characteristics of alcohol fermentation using sweet persimmon juice were studied in static fermentation in an effort to develop new types of functional wine. The yeast strain Saccharomyces cerevisiae KCCM 12650 was selected for use in the fermentation of sweet persimmon juice. Attempts were made to modify the sweet persimmon juice in order to find suitable conditions for alcohol fermentation. The modified sweet persimmon juice (pH 4.0) that was most suitable for alcohol fermentation contained $24^{\circ}Brix$ of sugar supplemented with sucrose as a carbon source and 0.5 g/L of $(NH_4)_2HPO_4$ as a nitrogen source. After 5 days of fermentation at $25^{\circ}C$, 12.8% of alcohol was produced from the modified juice and its pH was slightly decreased to 3.9. Browning of the wine was observed during storage due to the oxidation of phenolic compounds. The initial browning of 0.08% at $OD_{420}$ after fermentation increased to 0.40 during storage for 11 weeks at room temperature. The addition of $K_2S_2O_5$ was effective in delaying the browning of the wine. The browning of the wine decreased to 0.25 at $OD_{420}$ with the addition of 200 mg/L of $K_2S_2O_5$. The wine produced in this study contained some organic acids such as malic acid (6.82% g/L) and succinic acid (1.40 g/L), some minerals such as $K^+$ (947.8 mg/L) and $Mg^{2+}$ (36.4 mg/L), as well as soluble phenolics (779 mg/L of gallic acid equivalent). Schisandra fruit was added to the sweet persimmon juice during alcohol fermentation in order to improve the sour taste and flavor. The best sensory quality (taste, flavor, and color) was obtained by adding 0.5% schisandra fruit.

Manufacturing of the Enhances Antioxidative Wine Using a Ripe Daebong Persimmon (Dispyros kaki L) (대봉감 연시를 이용한 항산화 활성이 강화된 와인 제조)

  • Joo, Ok-Soo;Kang, Su-Tae;Jeong, Chang-Ho;Lim, Jong-Woo;Park, Yeong-Gyu;Cho, Kye-Man
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.126-134
    • /
    • 2011
  • In this study, the characteristics of alcohol fermentation using ripe Daebong persimmon juice were studied in static fermentation condition by Saccharomycess cerevisiae CS02 in an effort to develop new types of functional wine. Attempts were made to modify the ripe Daebong persimmon juice in order to find suitable conditions for alcohol fermentation. The modified ripe Daebong persimmon juice that was most suitable for alcohol fermentation contained $24^{\circ}brix$ of sugar supplemented with sucrose as a carbon source and 0.5 g/L of $(NH_4)_2HPO_4$ as a nitrogen source. After 9 days of fermentation at $25^{\circ}C$, $12.2{\pm}0.02%$ of alcohol was produced from the modified juice and its pH markedly decreased to $3.97{\pm}0.02$. The wine contained free sugar such as fructose ($0.12{\pm}0.02$ g/L), some organic acids such as malic acid ($35.92{\pm}0.24$ g/L), succinic acid ($8.12{\pm}0.03$ g/L), oxalic acid ($22.14{\pm}0.11$ g/L), and citric acid ($13.63{\pm}0.08$ g/L), as well as some flavanols and phenolic acids such as catechin gallate ($38.99{\pm}0.32$ mg/L), epicatechin gallate ($110.21{\pm}0.16$ mg/L), gallic acid ($163.88{\pm}1.11$ mg/L), epigallocatechin ($15.97{\pm}0.18$ mg/L), and tannic acid ($13.36{\pm}0.02$ mg/L). In addition, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (84.25%) and $ABTS^{\cdot+}$ radical (99.65%) scavenging activities were increased significantly with a corresponding increased in the organic acid and phenolic acid contents, but decreased in the flavonoids.