Phosphorylation-Dependent Septin Interaction of Bni5 is Important for Cytokinesis

  • Nam, Sung-Chang (Research & Development Center) ;
  • Sung, Hye-Ran (College of Pharmacy of Biotechnology Research Institute, Chungbuk National University) ;
  • Kang, Seung-Hye (College of Pharmacy of Biotechnology Research Institute, Chungbuk National University) ;
  • Joo, Jin-Young (College of Pharmacy of Biotechnology Research Institute, Chungbuk National University) ;
  • Lee, Soo-Jae (College of Pharmacy of Biotechnology Research Institute, Chungbuk National University) ;
  • Chung, Yeon-Bok (College of Pharmacy of Biotechnology Research Institute, Chungbuk National University) ;
  • Lee, Chong-Kil (College of Pharmacy of Biotechnology Research Institute, Chungbuk National University) ;
  • Song, Suk-Gil (College of Pharmacy of Biotechnology Research Institute, Chungbuk National University)
  • Published : 2007.06.30

Abstract

In budding yeast, septin plays as a scaffold to recruits protein components and regulates crucial cellular events including bud site selection, bud morphogenesis, Cdc28 activation pathway, and cytokinesis. Phosphorylation of Bni5 isolated as a suppressor for septin defect is essential to Swe1-dependent regulation of bud morphogenesis and mitotic entry. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we provide evidence that Bni5 phosphorylation is important for interaction with septin component Cdc11 and for timely delocalization from septin filament at late mitosis. Phosphorylation-deficient bni5-4A was synthetically lethal with $hof1{\Delta}$. bni5-4A cells had defective structure of septin ring and connected cell morphology, indicative of defects in cytokinesis. Two-hybrid analysis revealed that bni5-4A has a defect in direct interaction with Cdc11 and Cdc12. GFP-tagged bni5-4A was normally localized at mother-bud neck of budded cells before middle of mitosis. In contrast, at large-budded telophase cells, bni5-4A-GFP was defective in localization and disappeared from the neck approximately 2 min earlier than that of wild type, as evidenced by time-lapse analysis. Therefore, earlier delocalization of bni5-4A from septin filament is consistent with phosphorylation-dependent interaction with the septin component. These results suggest that timely de localization of Bni5 by phosphorylation is important for septin function and regulation of cytokinesis.

Keywords

References

  1. Adams, A.E. and J.R. Pringle. 1984. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogeneticmutant Saccharomyces cerevisiae. J. Cell Biol. 98, 934-945 https://doi.org/10.1083/jcb.98.3.934
  2. Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl. 1995. Current protocols in molecular biology. John Wiley and Sons, Ltd., New York, N.Y., USA
  3. Barral, Y., V. Mermall, M.S. Mooseker, and M. Snyder. 2000. Compartmentalization of the cell cortex by septins is required for maintenance of cell polarity in yeast. Mol. Cell. 5, 841-851 https://doi.org/10.1016/S1097-2765(00)80324-X
  4. Bi, E., P. Maddox, D.J. Lew, E.D. Salmon, J.N. McMillan, E. Yeh, and J.R. Pringle. 1998. Involvement of an actomyosin contractile sing in Saccharomyces cerevisiae cytokinesis. J. Cell Biol. 142, 1301-1312 https://doi.org/10.1083/jcb.142.5.1301
  5. Boeke, J.D., F. Lacroute, and G.R. Fink. 1984. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197, 345-346 https://doi.org/10.1007/BF00330984
  6. Carroll, C.W., R. Altman, D. Schieltz, J.R. Yates, and D. Kellogg. 1998. The septins are required for the mitosis-specific activation of the Gin4 kinase. J. Cell Biol. 143, 709-717 https://doi.org/10.1083/jcb.143.3.709
  7. Edgington, N.P., M.J. Blacketer, T.A. Bierwagen, and A.M. Myers. 1999. Control of Saccharomyces cerevisiae filamentous growth by cyclin-dependent kinase Cdc28. Mol. Cell Biol. 19, 1369-1380 https://doi.org/10.1128/MCB.19.2.1369
  8. Field, C.M. and D. Kellogg. 1999. Septins: cytoskeletal polymers or signaling GTPases? Trends Cell Biol. 9, 387-394 https://doi.org/10.1016/S0962-8924(99)01632-3
  9. Ford, S.K. and J.R. Pringle. 1991. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC11 gene product and the timing of events at the budding site. Dev. Genet. 12, 281-292 https://doi.org/10.1002/dvg.1020120405
  10. Frazier, J.A., M.L. Wong, M.S. Longtine, J.R. Pringle, M. Mann, T.J. Mitchison, and C. Field. 1998. Polymerization of purified yeast septins: evidence that organized filament arrays may not be required for septin function. J. Cell Biol. 143, 737-749 https://doi.org/10.1083/jcb.143.3.737
  11. Gladfelter, A.S., J.R. Pringle, and D.J. Lew. 2001. The septin cortex at the yeast mother-bud neck. Curr. Opin. Microbiol. 4, 681-689 https://doi.org/10.1016/S1369-5274(01)00269-7
  12. Guthrie, C. and G.R. Fink. 2002. Guide to yeast genetics and molecular cell biology, Methods in Enzymology. Vol. 194, Academic Press
  13. Haarer, B.K. and J.R. Pringle. 1987. Immunofluorescence localization of the Saccharomyces cerevisiae CDC12 gene product to the vicinity of the 10 nm filaments in the mother-bud neck. Mol. Cell. Biol. 7, 3678-3687 https://doi.org/10.1128/MCB.7.10.3678
  14. Hartwell, L.H. 1971. Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 69, 265-276 https://doi.org/10.1016/0014-4827(71)90223-0
  15. Hill, J.E., A.M. Myers, T.J. Koerner, and A. Tzagoloff. 1993. Yeast/E. coli shuttle vectors with multiple unique restriction site. Yeast 2, 163-167 https://doi.org/10.1002/yea.320020304
  16. Kamei, T., K. Tanaka, T. Hihara, M. Umikawa, H. Imamura, M. Kikyo, K. Ozaki, and Y. Takai. 1998. Interaction of Bnr1p with a novel Src homology 3 domain-containing Hof1p. Implication in cytokinesis in Saccharomyces cerevisiae. J. Biol. Chem. 273, 28341-28345 https://doi.org/10.1074/jbc.273.43.28341
  17. Kim, H.B., B.K. Haarer, and J.R. Pringle. 1991. Cellular morphogenesis in the Saccharomyces cerevisiae cell cycle: localization of the CDC3 gene product and the timing of events at the budding site. J. Cell Biol. 112, 535-544 https://doi.org/10.1083/jcb.112.4.535
  18. Kushnirov, V.V. 2000. Rapid and reliable protein extraction from yeast. Yeast 16, 857-860 https://doi.org/10.1002/1097-0061(20000630)16:9<857::AID-YEA561>3.0.CO;2-B
  19. Lee, P., S. Song, H. Ro, C.J. Park, J. Lippincott, R. Li, J.R. Pringle, C. De Virgilio, M.S. Longtine, and K.S. Lee. 2002. Bni5p, a Septin interacting protein, is required for normal septin function and cytokinesis in S. cerevisiae. Mol. Cell. Biol. 22, 6906-6920 https://doi.org/10.1128/MCB.22.19.6906-6920.2002
  20. Lippincott, J. and R. Li. 1998. Dual function of Cyk2, a cdc15/ PSTIP family protein, in regulating actomysin ring dynamics and septin distribution. J. Cell Biol. 143, 1947-1960 https://doi.org/10.1083/jcb.143.7.1947
  21. Longtine, M.S., D.J. DeMarini, M.L. Valencik, O.S. Al-Awar, H. Fares, C. De Virgilio, and J.R. Pringle. 1996. The septins: roles in cytokinesis and other processes. Curr. Opin. Cell. Biol. 8, 106-119 https://doi.org/10.1016/S0955-0674(96)80054-8
  22. Longtine, M.S., C.L. Theesfeld, J.N. McMillan, E. Weaver, J.R. Pringle, and D.J. Lew. 2000. Septin-dependent assembly of a cell cycle-regulatory module in Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 4049-4061 https://doi.org/10.1128/MCB.20.11.4049-4061.2000
  23. Mino, A., K. Tanaka, T. Kamei, M. Umikawa, T. Fujiwara, and Y. Takai. 1998. Shs1p: a novel member of septin that interacts with Spa2p, involved in polarized growth in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 251, 732-736 https://doi.org/10.1006/bbrc.1998.9541
  24. Nam, S.C., H. Sung, Y. Kim, Y.B. Chung, C. Lee, D.H. Lee, and S. Song. 2007. Requirement of Bni5 phosphorylation for bud morphogenesis in Saccharomyces cerevisiae. J. Microbiol. 45, 34-40
  25. Sherman, F., G.R. Fink, and J.B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA
  26. Shulewitz, M.J., C.J. Inouye, and J. Thorner. 1999. Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 7123-7137 https://doi.org/10.1128/MCB.19.10.7123
  27. Sikorski, R.S. and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27
  28. Song, S., T.Z. Grenfell, S. Garfield, R.L. Erikson, and K.S. Lee. 2000. Essential function of the polo box of Cdc5 in subcellular localization and induction of cytokinetic structures. Mol. Cell. Biol. 20, 286-298 https://doi.org/10.1128/MCB.20.1.286-298.2000
  29. Song, S. and K.S. Lee. 2001. A novel function of Saccharomyces cerevisiae CDC5 in cytokinesis. J. Cell Biol. 152, 451-469 https://doi.org/10.1083/jcb.152.3.451
  30. Sung, H., K.C. Han, J.C. Kim, K.W. Oh, H.S. Yoo, J.T. Hong, Y.B. Chung, C. Lee, K.S. Lee, and S. Song. 2005. A set of epitopetagging integration vectors for functional analysis in Saccharomyces cerevisiae. FEMS Yeast Res. 5, 943-950 https://doi.org/10.1016/j.femsyr.2005.03.008
  31. Vallen, E.A., A.J. Caviston, and E. Bi. 2000. Roles of Hof1p, Bni1p, Bnr1p, and Myo1p in cytokinesis in Saccharomyces cerevisiae. Mol. Biol. Cell. 11, 593-611 https://doi.org/10.1091/mbc.11.2.593