• Title/Summary/Keyword: Ruthenium catalyst

Search Result 59, Processing Time 0.025 seconds

Pretreatment for Improving Selective Hydrogenation Reaction of α, β-Unsaturated Aldehydes (α, β-불포화 알데히드의 선택적 수소화 반응성 향상을 위한 전처리 방법)

  • Kook-Seung Shin;Mi-Sun Cha;Chang-Soo Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.168-174
    • /
    • 2023
  • In commercial production processes of methyl methacrylate, there is a methacryl aldehyde as an intermediate or impurities. The existence of impurities is critical factor because of significant decrease of the conversion rate and selectivity of the entire chemical reaction. This study found that an acid was the main cause of the decrease in reactivity among various impurities because an acid rapidly lowers the activity of a catalyst and promotes a side reaction, the hetero Diels-Alder reaction. Therefore, the pretreatment methods with the removal of acid were comparatively evaluated by the selective hydrogenation reaction of the carbonyl group of the reactants. Based on several experimental conditions, we believe that proposed effective pretreatment improves productivity with appropriate economical process.

Effective α-Helix Stabilization via Hexenyl Propionate Cross-Link

  • Yoo, Jiyeon;Kim, Young-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3627-3631
    • /
    • 2014
  • In this study we examined two ester-containing cross-links, hex-2-enyl acetate and hex-2-enyl propionate, as new cross-linking systems for helix stabilization of short peptides. We demonstrated that these hexenyl ester cross-links can be readily installed via a ruthenium-mediated ring-closing metathesis reaction of L-aspartic acid 4-allyl ester or L-glutamic acid 5-allyl ester at position i and (S)-2-(4'-pentenyl)alanine at position i+4 using second generation Hoveyda-Grubbs catalyst at $60^{\circ}C$. Between these two cross-links, we found that the hex-2-enyl propionate significantly stabilizes the ${\alpha}$-helical conformations of short model peptides. The helix-stabilizing effects of the hex-2-enyl propionate tether appear to be as powerful as Verdine's i,i+4 all-hydrocarbon stapling system, which is one of the most widely used and the most potent helix-stabilizing cross-linking systems. Furthermore, the hex-2-enyl propionate bridge is reasonably robust against non-enzymatic hydrolytic cleavage at a physiological pH. While extended studies for probing its chemical scopes and biological applications are needed, we believe that this new helix-stabilizing system could serve as a useful chemical tool for understanding protein folding and designing conformationally-constrained peptide drugs.

Synthesis of Self-Assembled Peptide Nanoparticles Based on Dityrosine Covalent Bonds (다이타이로신 공유결합으로 자기조립된 펩타이드 나노입자의 합성)

  • Hur, Yun-Mi;Min, Kyoung-Ik
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.112-117
    • /
    • 2021
  • In this study, a method of self-assembly of peptides based on irreversible covalent bonds was studied by mimicking a biological covalent bond, dityrosine bond. A tyrosine-rich short peptide monomer having the sequence of Tyr-Tyr-Leu-Tyr-Tyr (YYLYY) was selected to achieve a high-density of dityrosine bond. The peptide nanoparticles covalently self-assembled with dityrosine bonds were synthesized by one-step photo-crosslinking of a peptide using a ruthenium catalyst under visible light. The effect of the concentration of each component for the size of the peptide nanoparticle was studied using dynamic light scattering, UV-Vis spectroscopy, and transmission electron microscopy. As a result, the synthesis conditions for size of the peptide nanoparticles ranging from 130 nm to 350 nm were optimized.

A Study on the Adsorption of Carbonmonoxide on Silica Supported Ru-Fe Catalyst by Infrared Spectroscopy (실리카지지 루테늄-철 촉매에서 일산화탄소의 흡착에 관한 적외선 분광법을 이용한 연구)

  • Park, Sang-Youn;Ryu, Kwang-Sun;Yang, Sung-Bong;Yoon, Koo-Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.81-86
    • /
    • 2010
  • On adsorbing carbon monoxide (CO) on the silica supported ruthenium/iron alloy ($Ru/Fe-SiO_2$) samples above mole ratio 9/1 of Ru/Fe five bands ($2138.7{\sim}2142.5cm^{-1}$, $2067.3{\sim}2073.1cm^{-1}$, $1976.7{\sim}2017.2cm^{-1}$, $1737.9{\sim}1799.3cm^{-1}$, $1625.7cm^{-1}$) were observed, and in $Ru/Fe-SiO_2$ samples below mole ratio 8/2 of Ru/Fe two bands ($1934.0{\sim}1990.2cm^{-1}$, $1625.7cm^{-1}$) were observed. The $2138.7{\sim}2142.5cm^{-1}$ bands, the $2067.3{\sim}2073.1cm^{-1}$ bands, and the $1988.3{\sim}2030.7cm^{-1}$ bands may be ascribed to stretching vibrations of CO molecules lineally bonded to the Ru atoms on supported Ru/Fe cluster surface, the $1737.9{\sim}1799.3cm^{-1}$ bands to stretching vibrations of CO molecules bridge bonded to the Ru atoms on supported Ru/Fe cluster surface or to stretching vibrations of CO molecules bonded to the Ru atoms on high Miller index planes, and the $1934.0{\sim}1990.2cm^{-1}$ bands to stretching vibrations of CO molecules lineally bonded to the Fe atoms on supported Ru/Fe cluster surface. The absorbances of the $1934.0{\sim}1990.2cm^{-1}$ bands in $Ru/Fe-SiO_2$ samples gradually increased with the increases of Ru/Fe mole ratio below the ratio of 8/2. This phenomena may be ascribed to the increases of Fe concentration of surface compared with the one of the sample and to the increases of surface area of supported Ru/Fe cluster according as increase of Ru/Fe mole ratio below the ratio of 8/2 compared with the $Fe-SiO_2$ sample.

The Study of Model Biogas Catalyst Reforming Using 3D IR Matrix Burner (3D IR 매트릭스 버너에 의한 모사 바이오가스 촉매 개질 연구)

  • Lim, Mun Sup;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.840-846
    • /
    • 2012
  • Global climate changes caused by $CO_2$ emissions are currently debated around the world; green sources of energy are being sought as alternatives to replace fossil fuels. The sustainable use of biogas for energy production does not contribute to $CO_2$ emission and has therefore a high potential to reduce them. Catalytic steam reforming of a model biogas ($CH_4:CO_2$ = 60%:40%) is investigated to produce $H_2$-rich synthesis gas. The biogas utilized 3D-IR matrix burner in which the surface combustion is applied. The ruthenium catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, $CH_4/CO_2$ ratio, Space velocity and Refomer temperature were 3.25, 60% : 40%, $14.7L/g{\cdot}hr$ and $550^{\circ}C$ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, $H_2$ yield, $H_2$/CO ratio, CO selectivity and energy efficiency were 0.65, 2.14, 0.59, 51.29%.

A Study on the Separation of Membrane and Leaching of Platinum and Ruthenium by Hydrochloric Acid from MEA of Fuel Cell (연료전지용(燃料電池用) 막전극접합체(膜電極接合體)의 막분리(膜分離) 및 염산(鹽酸)에 의한 백금(白金)과 루테늄의 침출(浸出)에 관(關)한 연구(硏究))

  • Lee, Jin-A;Kang, Hong-Yoon;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.15-20
    • /
    • 2012
  • In this paper, we carried out separation of membrane and leaching of Pt and Ru using hydrochloric acid from MEA(membrane-electrode assembly) of fuel cell. In this method, these were separated from MEA of fuel cell using the distilled water, 10 vol.% butanol solution and 15 vol.% cationic surfactant(Koremul-LN-7) by dipping method without the dispersion of catalyst particles. And the leaching of Pt and Ru containing in the separated carbon paper catalysts has been studied by hydrochloric acid using $HNO_3$ or $H_2O_2$ as a oxidant. The leaching ratio of Pt and Ru were higher when $H_2O_2$ was used as a oxidant and the optimum conditions were obtained in 8M HCl, the amount of $H_2O_2$ 5M and 6 hours of leaching time at $90^{\circ}C$. In this condition, extraction of Pt and Ru were 98% and 71.5%, respectively.

The Role of the Surface Oxide Layer on Ru Nanoparticles in Catalytic Activity of CO Oxidation

  • Kim, Sun-Mi;Qadir, Kamran;Jin, Sook-Young;Jung, Kyeong-Min;Reddy, A. Satyanarayana;Joo, Sang-Hoon;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.304-304
    • /
    • 2010
  • The study on the catalytic oxidation of carbon monoxide (CO) to carbon dioxide ($CO_2$) using the noble metals has long been the interest subject and the recent progress in nanoscience provides the opportunity to develop new model systems of catalysts in this field. Of the noble metal catalysts, we selected ruthenium (Ru) as metal catalyst due to its unusual catalytic behavior. The size of colloid Ru NPs was controlled by the concentration of Ru precursor and the final reduction temperatures. For catalytic activity of CO oxidation, it was found that the trend is dependent on the size of Ru NPs. In order to explain this trend, the surface oxide layer surrounding the metal core has been suggested as the catalytically active species through several studies. In this poster, we show the influence of surface oxide on Ru NPs on the catalytic activity of CO oxidation using chemical treatments including oxidation, reduction and UV-Ozone surface treatment. The changes occurring to UV-Ozone surface treatment will be characterized with XPS and SEM. The catalytic activity before and after the chemical modification were measured. We discuss the trend of catalytic activity in light of the formation of core-shell type oxide on nanoparticles surfaces.

  • PDF

Property of Counter Electrode with Pt and Ru Catalyst Films for Dye-Sensitized Solar Cell (염료감응형 태양전지용 나노두께 Pt와 Ru 상대전극의 물성)

  • Noh, Yunyoung;Yu, Byungkwan;Yoo, Kicheon;Ko, Min Jae;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.243-247
    • /
    • 2012
  • A ruthenium (Ru) catalytic layer and a conventional Pt layer were assessed as counter electrodes (CE) for dye sensitized solar cells (DSSCs). Ru films with different thicknesses of 34, 46, and 90 nm were deposited by atomic layer deposition (ALD). Pt layers with the same thicknesses were prepared by sputtering. $0.45cm^2$ DSSCs were prepared and their properties were characterized by FE-SEM, cyclic voltammetry (CV), impedance spectroscopy (EIS), and current-voltage (I-V). FE-SEM revealed that the crystallized Ru films and Pt films had been deposited quite conformally. CV showed that the catalytic activity of Pt was much greater than that of Ru. In addition, although the catalytic activity of Pt did not depend on the thickness, that of Ru showed an increase with increasing thickness. Impedance analysis revealed high charge transfer resistance at the Ru interface and a decrease with increasing Ru thickness, whereas Pt showed low resistance with no thickness dependence. Despite the relatively small catalytic activity of Ru, the I-V result revealed the average energy conversion efficiency of Ru and Pt to be 2.98% and 6.57%, respectively. These results suggest that Ru can be used as counter electrodes in DSSCs due to its extremely low temperature process compatibility.

High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent

  • Choi, Kwang-Hyun;Lee, Kug-Seung;Jeon, Tae-Yeol;Park, Hee-Young;Jung, Nam-Gee;Chung, Young-Hoon;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • Alloying degree is an important structural factor of PtRu catalysts for direct methanol fuel cells (DMFC). In this work, carbon supported PtRu catalysts were synthesized by reduction method using anhydrous ethanol as a solvent and $NaBH_4$ as a reducing agent. Using anhydrous ethanol as a solvent resulted in high alloying degree and good dispersion. The morphological structure and crystallanity of synthesized catalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM). CO stripping and methanol oxidation reaction were measured. Due to high alloying degree catalyst prepared in anhydrous ethanol, exhibited low onset potential for methanol oxidation and negative peak shift of CO oxidation than commercial sample. Consequently, samples, applying ethanol as a solvent, exhibited not only enhanced CO oxidation, but also increased methanol oxidation reaction (MOR) activity compared with commercial PtRu/C (40 wt%, E-tek) and 40 wt% PtRu/C prepared in water solution.