• 제목/요약/키워드: Runx2

검색결과 145건 처리시간 0.028초

Molecular Mechanism of Runx2-Dependent Bone Development

  • Komori, Toshihisa
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.168-175
    • /
    • 2020
  • Runx2 is an essential transcription factor for skeletal development. It is expressed in multipotent mesenchymal cells, osteoblast-lineage cells, and chondrocytes. Runx2 plays a major role in chondrocyte maturation, and Runx3 is partly involved. Runx2 regulates chondrocyte proliferation by directly regulating Ihh expression. It also determines whether chondrocytes become those that form transient cartilage or permanent cartilage, and functions in the pathogenesis of osteoarthritis. Runx2 is essential for osteoblast differentiation and is required for the proliferation of osteoprogenitors. Ihh is required for Runx2 expression in osteoprogenitors, and hedgehog signaling and Runx2 induce the differentiation of osteoprogenitors to preosteoblasts in endochondral bone. Runx2 induces Sp7 expression, and Runx2, Sp7, and canonical Wnt signaling are required for the differentiation of preosteoblasts to immature osteoblasts. It also induces the proliferation of osteoprogenitors by directly regulating the expression of Fgfr2 and Fgfr3. Furthermore, Runx2 induces the proliferation of mesenchymal cells and their commitment into osteoblast-lineage cells through the induction of hedgehog (Gli1, Ptch1, Ihh), Fgf (Fgfr2, Fgfr3), Wnt (Tcf7, Wnt10b), and Pthlh (Pth1r) signaling pathway gene expression in calvaria, and more than a half-dosage of Runx2 is required for their expression. This is a major cause of cleidocranial dysplasia, which is caused by heterozygous mutation of RUNX2. Cbfb, which is a co-transcription factor that forms a heterodimer with Runx2, enhances DNA binding of Runx2 and stabilizes Runx2 protein by inhibiting its ubiquitination. Thus, Runx2/Cbfb regulates the proliferation and differentiation of chondrocytes and osteoblast-lineage cells by activating multiple signaling pathways and via their reciprocal regulation.

Protein kinase C 및 MAPK pathway가 Runx2의 전사 활성에 미치는 영향 (THE EFFECT OF PKC PATHWAY & MAPK PATHWAY ON RUNX2 TRANSCRIPTIONAL ACTIVITY)

  • 김은정;김현정;류현모;김현정;김영진;남순현
    • 대한소아치과학회지
    • /
    • 제29권3호
    • /
    • pp.337-344
    • /
    • 2002
  • 조골 세포의 분화에 중요한 역할을 하는 전사 인자인 Runx2는 그 역할은 많이 알려져 있지만, 이를 조절하는 신호 전달체계에 대해서는 많이 알려지지 않았다. 이에 본 연구에서는 조골 세포의 분화 및 증식에 영향을 미친다고 알려진 PKC 및 MAPK pathway가 Runx2에 미치는 영향을 알아보고자 하였다. PKC활성화에 따른 Runx2의 전사 활성 및 발현 양상을 관찰하기 위해 6XOSE2-C2C12 cell에 PKC 활성제를 처리하여 luciferase assay와 Northern blot analysis를 시행하였다. MAPK 활성화에 따른 Runx2의 전사 활성을 관찰하기 위해 MAPK 활성제를 6XOSE2-C2C12 cell에 처리하여 luciferase assay를 시행하였다. 두 신호 전달 체계의 활성화에 따른 골 표지 유전자의 전사 양상을 관찰하기 위해 osteocalcin과 osteopontin을 transient transfection한 C2C12 cell에 각 신호 전달 체계의 활성제를 처리하여 luciferase assay를 시행하였다. 또한 각 신호 전달 체계가 상호 작용하는지 알아보기 위하여 MAPK 억제제를 전처리하여 MAPK pathway를 차단한 1 시간 뒤 PKC 활성제를 처리하고 luciferase assay를 시행하여 Runx2의 전사 활성을 관찰하였다. 이상의 실험으로 다음과 같은 결론을 얻었다. - PKC pathway의 활성화는 Runx2의 전사 활성 및 발현을 증가시키고 이로 인해 그의 영향을 받는 골 표지 유전자 (osteopontin, osteocalcin)의 전사도 증가한다. - MAPK pathway의 활성화는 Runx2 및 골 표지 유전자 (osteopontin, osteocalcin)의 전사활성을 증가시킨다. - PKC pathway는 MAPK pathway를 경유하여 Runx2의 전사 활성을 조절한다.

  • PDF

Post-Translational Regulations of Transcriptional Activity of RUNX2

  • Kim, Hyun-Jung;Kim, Woo-Jin;Ryoo, Hyun-Mo
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.160-167
    • /
    • 2020
  • Runt-related transcription factor 2 (RUNX2) is a key transcription factor for bone formation and osteoblast differentiation. Various signaling pathways and mechanisms that regulate the expression and transcriptional activity of RUNX2 have been thoroughly investigated since the involvement of RUNX2 was first reported in bone formation. As the regulation of Runx2 expression by extracellular signals has recently been reviewed, this review focuses on the regulation of post-translational RUNX2 activity. Transcriptional activity of RUNX2 is regulated at the post-translational level by various enzymes including kinases, acetyl transferases, deacetylases, ubiquitin E3 ligases, and prolyl isomerases. We describe a sequential and linear causality between post-translational modifications of RUNX2 by these enzymes. RUNX2 is one of the most important osteogenic transcription factors; however, it is not a suitable drug target. Here, we suggest enzymes that directly regulate the stability and/or transcriptional activity of RUNX2 at a post-translational level as effective drug targets for treating bone diseases.

CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach

  • Kamikubo, Yasuhiko
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.198-202
    • /
    • 2020
  • Comprehensive inhibition of RUNX1, RUNX2, and RUNX3 led to marked cell suppression compared with inhibition of RUNX1 alone, clarifying that the RUNX family members are important for proliferation and maintenance of diverse cancers, and "cluster regulation of RUNX (CROX)" is a very effective strategy to suppress cancer cells. Recent studies reported by us and other groups suggested that wild-type RUNX1 is needed for survival and proliferation of certain types of leukemia, lung cancer, gastric cancer, etc. and for their one of metastatic target sites such as born marrow endothelial niche, suggesting that RUNX1 often functions oncogenic manners in cancer cells. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in leukemia and even solid cancers based on recent our findings such as "genetic compensation of RUNX family transcription factors (the compensation mechanism for the total level of RUNX family protein expression)", "RUNX1 inhibition-induced inhibitory effects on leukemia cells and on solid cancers through p53 activation", and "autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells". Taken together, these findings identify a crucial role for the RUNX cluster in the maintenance and progression of cancers and suggest that modulation of the RUNX cluster using the pyrrole-imidazole polyamide gene-switch technology is a potential novel therapeutic approach to control cancers.

The synergistic regulatory effect of Runx2 and MEF transcription factors on osteoblast differentiation markers

  • Lee, Jae-Mok;Libermann, Towia A.;Cho, Je-Yoel
    • Journal of Periodontal and Implant Science
    • /
    • 제40권1호
    • /
    • pp.39-44
    • /
    • 2010
  • Purpose: Bone tissues for clinical application can be improved by studies on osteoblast differentiation. Runx2 is known to be an important transcription factor for osteoblast differentiation. However, bone morphogenetic protein (BMP)-2 treatment to stimulate Runx2 is not sufficient to acquire enough bone formation in osteoblasts. Therefore, it is necessary to find other regulatory factors which can improve the transcriptional activity of Runx2. The erythroblast transformation-specific (ETS) transcription factor family is reported to be involved in various aspects of cellular proliferation and differentiation. Methods: We have noticed that the promoters of osteoblast differentiation markers such as alkaline phosphatase (Alp), osteopontin (Opn), and osteocalcin (Oc) contain Ets binding sequences which are also close to Runx2 binding elements. Luciferase assays were performed to measure the promoter activities of these osteoblast differentiation markers after the transfection of Runx2, myeloid Elf-1-like factor (MEF), and Runxs+MEF. Reverse-transcription polymerase chain reaction was also done to check the mRNA levels of Opn after Runx2 and MEF transfection into rat osteoblast (ROS) cells. Results: We have found that MEF, an Ets transcription factor, increased the transcriptional activities of Alp, Opn, and Oc. The addition of Runx2 resulted in the 2- to 6-fold increase of the activities. This means that these two transcription factors have a synergistic effect on the osteoblast differentiation markers. Furthermore, early introduction of these two Runx2 and MEF factors significantly elevated the expression of the Opn mRNA levels in ROS cells. We also showed that Runx2 and MEF proteins physically interact with each other. Conclusions: Runx2 interacts with MEF proteins and binds to the promoters of the osteoblast markers such as Opn nearby MEF to increase its transcriptional activity. Our results also imply that osteoblast differentiation and bone formation can be increased by activating MEF to elicit the synergistic effect of Runx2 and MEF.

Role of RUNX Family Transcription Factors in DNA Damage Response

  • Samarakkody, Ann Sanoji;Shin, Nah-Young;Cantor, Alan B.
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.99-106
    • /
    • 2020
  • Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.

Upregulation of smpd3 via BMP2 stimulation and Runx2

  • Chae, Young-Mi;Heo, Sun-Hee;Kim, Jae-Young;Lee, Jae-Mok;Ryoo, Hyun-Mo;Cho, Je-Yoel
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.86-90
    • /
    • 2009
  • Deletion of smpd3 induces osteogenesis and dentinogenesis imperfecta in mice. smpd3 is highly elevated in the parietal bones of developing mouse calvaria, but not in sutural mesenchymes. Here, we examine the mechanism of smpd3 regulation, which involves BMP2 stimulation of Runx2. smpd3 mRNA expression increased in response to BMP2 treatment and Runx2 transfection in C2C12 cells. The Runx2-responsive element (RRE) encoded within the -562 to -557 region is important for activation of the smpd3 promoter by Runx2. Electrophoretic mobility shift assays revealed that Runx2 binds strongly to the -355 to -350 RRE and less strongly to the -562 to -557 site. Thus, the smpd3 promoter is activated by BMP2 and is directly regulated by the Runx2 transcription factor. This novel description of smpd3 regulation will aid further studies of bone development and osteogenesis.

Increased Oxidative Stress and RUNX3 Hypermethylation in Patients with Hepatitis B Virus-Associated Hepatocellular Carcinoma (HCC) and Induction of RUNX3 Hypermethylation by Reactive Oxygen Species in HCC Cells

  • Poungpairoj, Poonsin;Whongsiri, Patcharawalai;Suwannasin, Surasit;Khlaiphuengsin, Apichaya;Tangkijvanich, Pisit;Boonla, Chanchai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5343-5348
    • /
    • 2015
  • Promoter hypermethylation of the runt-related transcription factor 3 (RUNX3) gene is associated with increased risk of hepatocellular carcinoma (HCC). Oxidative stress plays a vital role in both carcinogenesis and progression of HCC. However, whether oxidative stress and RUNX3 hypermethylation in HCC have a cause-and-effect relationship is not known. In this study, plasma protein carbonyl and total antioxidant capacity (TAC) in patients with hepatitis B virus (HBV)-associated HCC (n=60) and age-matched healthy subjects (n=80) was determined. RUNX3 methylation in peripheral blood mononuclear cells (PBMC) of subjects was measured by methylation-specific PCR. Effect of reactive oxygen species (ROS) on induction of RUNX3 hypermethylation in HCC cells was investigated. Plasma protein carbonyl content was significantly higher, whereas plasma TAC was significantly lower, in HCC patients than healthy controls. Based on logistic regression, increased plasma protein carbonyl and decreased plasma TAC were independently associated with increased risk for HCC. PBMC RUNX3 methylation in the patient group was significantly greater than in the healthy group. RUNX3 methylation in hydrogen peroxide ($H_2O_2$)-treated HepG2 cells was significantly higher than in untreated control cells. In conclusion, increase in oxidative stress in Thai patients with HBV-associated HCC was demonstrated. This oxidative increment was independently associated with an increased risk for HCC development. RUNX3 in PBMC was found to be hypermethylated in the HCC patients. In vitro, RUNX3 hypermethylation was experimentally induced by $H_2O_2$. Our findings suggest that oxidative stress is a cause of RUNX3 promoter hypermethylation in HCC cells.

GATA4 negatively regulates bone sialoprotein expression in osteoblasts

  • Song, Insun;Jeong, Byung-chul;Choi, Yong Jun;Chung, Yoon-Sok;Kim, Nacksung
    • BMB Reports
    • /
    • 제49권6호
    • /
    • pp.343-348
    • /
    • 2016
  • GATA4 has been reported to act as a negative regulator in osteoblast differentiation by inhibiting the Dlx5 transactivation of Runx2 via the attenuation of the binding ability of Dlx5 to the Runx2 promoter region. Here, we determine the role of GATA4 in the regulation of bone sialoprotein (Bsp) in osteoblasts. We observed that the overexpression of Runx2 or Sox9 induced the Bsp expression in osteoblastic cells. Silencing GATA4 further enhanced the Runx2- and Sox9-mediated Bsp promoter activity, whereas GATA4 overexpression down-regulated Bsp promoter activity mediated by Runx2 and Sox9. GATA4 also interacted with Runx2 and Sox9, by attenuating the binding ability of Runx2 and Sox9 to the Bsp promoter region. Our data suggest that GATA4 acts as a negative regulator of Bsp expression in osteoblasts.

Immunolocalization of Runx2 and Osterix in the Developing Periodontal Tissues of the Mouse

  • Kim, Byung-In;Na, Seung-Hoon;Kim, Ji-Youn;Shin, Je-Won;Jue, Seong-Suk
    • International Journal of Oral Biology
    • /
    • 제36권2호
    • /
    • pp.51-57
    • /
    • 2011
  • Runx2 and Osterix, the transcription factors for osteoblast differentiation, are known as fundamental factors to regulate the development of calcified tissues. However, the biological functions of these factors in the development of the periodontal tissues remain unclear. In this study, we investigated the distribution of Runx2 and Osterix during periodontal tissue development of the mice. Mandibles from 14-day-old mice were prepared for paraffin section. Serial sections of the mandible containing $1^{st}$ molar tooth germs were obtained as a thickness of $7\;{\mu}m$. Some sections were stained with hematoxylin and eosin. Others were used for immunohistochemistry for PCNA, Runx2, and Osterix. Epithelial cells in growing end of Hertwig's epithelial root sheath (HERS) and mesenchymal cells adjacent to the growing end of HERS expressed PCNA. Undifferentiated mesenchymal cells and hard tissue forming cells like cementoblasts and osteoblasts in early stage of differentiation expressed Runx2. Fully differentiated cementoblasts and osteoblasts secreting matrix proteins expressed Osterix. However, the cells terminated the matrix formation did not express Osterix. Periodontal ligament cells expressed Runx2 and Osterix. Pulp cells expressed Runx2 only. These results suggest that Runx2 and Osterix might regulate the differentiation of cementoblasts in the same manner as osteoblasts. Runx2 might participate in the process of cementoblast differentiation in early stage, whether Osterix might regulate the maturation and matrix synthesis of the cells.