Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0247

Post-Translational Regulations of Transcriptional Activity of RUNX2  

Kim, Hyun-Jung (Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University)
Kim, Woo-Jin (Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University)
Ryoo, Hyun-Mo (Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University)
Abstract
Runt-related transcription factor 2 (RUNX2) is a key transcription factor for bone formation and osteoblast differentiation. Various signaling pathways and mechanisms that regulate the expression and transcriptional activity of RUNX2 have been thoroughly investigated since the involvement of RUNX2 was first reported in bone formation. As the regulation of Runx2 expression by extracellular signals has recently been reviewed, this review focuses on the regulation of post-translational RUNX2 activity. Transcriptional activity of RUNX2 is regulated at the post-translational level by various enzymes including kinases, acetyl transferases, deacetylases, ubiquitin E3 ligases, and prolyl isomerases. We describe a sequential and linear causality between post-translational modifications of RUNX2 by these enzymes. RUNX2 is one of the most important osteogenic transcription factors; however, it is not a suitable drug target. Here, we suggest enzymes that directly regulate the stability and/or transcriptional activity of RUNX2 at a post-translational level as effective drug targets for treating bone diseases.
Keywords
osteoblast differentiation; phosphorylation-directed Isomerization; post-translational modification; RUNX2; transcriptional activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Maruyama, Z., Yoshida, C.A., Furuichi, T., Amizuka, N., Ito, M., Fukuyama, R., Miyazaki, T., Kitaura, H., Nakamura, K., Fujita, T., et al. (2007). Runx2 determines bone maturity and turnover rate in postnatal bone development and is involved in bone loss in estrogen deficiency. Dev. Dyn. 236, 1876-1890.   DOI
2 Moloney, D.M., Wall, S.A., Ashworth, G.J., Oldridge, M., Glass, I.A., Francomano, C.A., Muenke, M., and Wilkie, A.O. (1997). Prevalence of Pro250Arg mutation of fibroblast growth factor receptor 3 in coronal craniosynostosis. Lancet 349, 1059-1062.   DOI
3 Zhao, M., Qiao, M., Harris, S.E., Oyajobi, B.O., Mundy, G.R., and Chen, D. (2004). Smurf1 inhibits osteoblast differentiation and bone formation in vitro and in vivo. J. Biol. Chem. 279, 12854-12859.   DOI
4 Ziros, P.G., Basdra, E.K., and Papavassiliou, A.G. (2008). Runx2: of bone and stretch. Int. J. Biochem. Cell Biol. 40, 1659-1663.   DOI
5 Zhao, M., Qiao, M., Oyajobi, B.O., Mundy, G.R., and Chen, D. (2003). E3 ubiquitin ligase Smurf1 mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation. J. Biol. Chem. 278, 27939-27944.   DOI
6 Zheng, Q., Zhou, G., Morello, R., Chen, Y., Garcia-Rojas, X., and Lee, B. (2003). Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J. Cell Biol. 162, 833-842.   DOI
7 Zhu, W., He, X., Hua, Y., Li, Q., Wang, J., and Gan, X. (2017). The E3 ubiquitin ligase WWP2 facilitates RUNX2 protein transactivation in a monoubiquitination manner during osteogenic differentiation. J. Biol. Chem. 292, 11178-11188.   DOI
8 Kaneki, H., Guo, R., Chen, D., Yao, Z., Schwarz, E.M., Zhang, Y.E., Boyce, B.F., and Xing, L. (2006). Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J. Biol. Chem. 281, 4326-4333.   DOI
9 Jones, D.C., Wein, M.N., Oukka, M., Hofstaetter, J.G., Glimcher, M.J., and Glimcher, L.H. (2006). Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 312, 1223-1227.   DOI
10 Jun, J.H., Yoon, W.J., Seo, S.B., Woo, K.M., Kim, G.S., Ryoo, H.M., and Baek, J.H. (2010). BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J. Biol. Chem. 285, 36410-36419.   DOI
11 Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765-771.   DOI
12 Morrison, N.A., Stephens, A.A., Osato, M., Polly, P., Tan, T.C., Yamashita, N., Doecke, J.D., Pasco, J., Fozzard, N., Jones, G., et al. (2012). Glutamine repeat variants in human RUNX2 associated with decreased femoral neck BMD, broadband ultrasound attenuation and target gene transactivation. PLoS One 7, e42617.   DOI
13 Mundlos, S., Otto, F., Mundlos, C., Mulliken, J.B., Aylsworth, A.S., Albright, S., Lindhout, D., Cole, W.G., Henn, W., Knoll, J.H., et al. (1997). Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89, 773-779.   DOI
14 Ogawa, E., Inuzuka, M., Maruyama, M., Satake, M., Naito-Fujimoto, M., Ito, Y., and Shigesada, K. (1993a). Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha. Virology 194, 314-331.   DOI
15 Ogawa, E., Maruyama, M., Kagoshima, H., Inuzuka, M., Lu, J., Satake, M., Shigesada, K., and Ito, Y. (1993b). PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc. Natl. Acad. Sci. U. S. A. 90, 6859-6863.   DOI
16 Olsen, J.V., Blagoev, B., Gnad, F., Macek, B., Kumar, C., Mortensen, P., and Mann, M. (2006). Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635-648.   DOI
17 Pande, S., Browne, G., Padmanabhan, S., Zaidi, S.K., Lian, J.B., van Wijnen, A.J., Stein, J.L., and Stein, G.S. (2013). Oncogenic cooperation between PI3K/Akt signaling and transcription factor Runx2 promotes the invasive properties of metastatic breast cancer cells. J. Cell. Physiol. 228, 1784-1792.   DOI
18 Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755-764.   DOI
19 Kim, B.G., Kim, H.J., Park, H.J., Kim, Y.J., Yoon, W.J., Lee, S.J., Ryoo, H.M., and Cho, J.Y. (2006). Runx2 phosphorylation induced by fibroblast growth factor-2/protein kinase C pathways. Proteomics 6, 1166-1174.   DOI
20 Kim, H.J., Kim, J.H., Bae, S.C., Choi, J.Y., Kim, H.J., and Ryoo, H.M. (2003) The protein kinase C pathway plays a central role in the fibroblast growth factor-stimulated expression and transactivation activity of Runx2. J. Biol. Chem. 278, 319-326.   DOI
21 Kugimiya, F., Kawaguchi, H., Ohba, S., Kawamura, N., Hirata, M., Chikuda, H., Azuma, Y., Woodgett, J.R., Nakamura, K., and Chung, U.I. (2007). GSK-3beta controls osteogenesis through regulating Runx2 activity. PLoS One 2, e837.   DOI
22 Lamour, V., Detry, C., Sanchez, C., Henrotin, Y., Castronovo, V., and Bellahcene, A. (2007). Runx2- and histone deacetylase 3-mediated repression is relieved in differentiating human osteoblast cells to allow high bone sialoprotein expression. J. Biol. Chem. 282, 36240-36249.   DOI
23 Lee, Z.H., Kim, H.J., and Ryoo, H.M. (2015). A novel osteogenic activity of suberoylanilide hydroxamic acid is synergized by BMP-2. J. Bone Metab. 22, 51-56.   DOI
24 Levanon, D. and Groner, Y. (2004). Structure and regulated expression of mammalian RUNX genes. Oncogene 23, 4211-4219.   DOI
25 Li, Q.L., Ito, K., Sakakura, C., Fukamachi, H., Inoue, K., Chi, X.Z., Lee, K.Y., Nomura, S., Lee, C.W., Han, S.B., et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109, 113-124.   DOI
26 Polonio-Vallon, T., Kruger, D., and Hofmann, T.G. (2014). ShaPINg cell fate upon DNA damage: role of Pin1 isomerase in DNA damage-induced cell death and repair. Front. Oncol. 4, 148.
27 Park, M.H., Shin, H.I., Choi, J.Y., Nam, S.H., Kim, Y.J., Kim, H.J., and Ryoo, H.M. (2001). Differential expression patterns of Runx2 isoforms in cranial suture morphogenesis. J. Bone Miner. Res. 16, 885-892.   DOI
28 Park, O.J., Kim, H.J., Woo, K.M., Baek, J.H., and Ryoo, H.M. (2010). FGF2- activated ERK mitogen-activated protein kinase enhances Runx2 acetylation and stabilization. J. Biol. Chem. 285, 3568-3574.   DOI
29 Pawson, T. and Scott, J.D. (2005). Protein phosphorylation in signaling--50 years and counting. Trends Biochem. Sci. 30, 286-290.   DOI
30 Qiao, M., Shapiro, P., Fosbrink, M., Rus, H., Kumar, R., and Passaniti, A. (2006). Cell cycle-dependent phosphorylation of the RUNX2 transcription factor by cdc2 regulates endothelial cell proliferation. J. Biol. Chem. 281, 7118-7128.   DOI
31 Schroeder, T.M., Kahler, R.A., Li, X., and Westendorf, J.J. (2004). Histone deacetylase 3 interacts with runx2 to repress the osteocalcin promoter and regulate osteoblast differentiation. J. Biol. Chem. 279, 41998-42007.   DOI
32 Selvamurugan, N., Pulumati, M.R., Tyson, D.R., and Partridge, N.C. (2000). Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor alpha1. J. Biol. Chem. 275, 5037-5042.   DOI
33 Selvamurugan, N., Shimizu, E., Lee, M., Liu, T., Li, H., and Partridge, N.C. (2009). Identification and characterization of Runx2 phosphorylation sites involved in matrix metalloproteinase-13 promoter activation. FEBS Lett. 583, 1141-1146.   DOI
34 Bae, H.S., Yoon, W.J., Cho, Y.D., Islam, R., Shin, H.R., Kim, B.S., Lim, J.M., Seo, M.S., Cho, S.A., Choi, K.Y., et al. (2017). An HDAC inhibitor, entinostat/MS- 275, partially prevents delayed cranial suture closure in heterozygous Runx2 null mice. J. Bone Miner. Res. 32, 951-961.   DOI
35 Li, X., Huang, M., Zheng, H., Wang, Y., Ren, F., Shang, Y., Zhai, Y., Irwin, D.M., Shi, Y., Chen, D., et al. (2008). CHIP promotes Runx2 degradation and negatively regulates osteoblast differentiation. J. Cell Biol. 181, 959-972.   DOI
36 Lu, K.P. and Zhou, X.Z. (2007). The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat. Rev. Mol. Cell Biol. 8, 904-916.   DOI
37 Aronson, B.D., Fisher, A.L., Blechman, K., Caudy, M., and Gergen, J.P. (1997). Groucho-dependent and -independent repression activities of Runt domain proteins. Mol. Cell. Biol. 17, 5581-5587.   DOI
38 Bae, S.C., Ogawa, E., Maruyama, M., Oka, H., Satake, M., Shigesada, K., Jenkins, N.A., Gilbert, D.J., Copeland, N.G., and Ito, Y. (1994). PEBP2 alpha B/mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol. Cell. Biol. 14, 3242-3252.   DOI
39 Choi, J.Y., Pratap, J., Javed, A., Zaidi, S.K., Xing, L., Balint, E., Dalamangas, S., Boyce, B., van Wijnen, A.J., Lian, J.B., et al. (2001). Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc. Natl. Acad. Sci. U. S. A. 98, 8650-8655.   DOI
40 Shen, R., Wang, X., Drissi, H., Liu, F., O'Keefe, R.J., and Chen, D. (2006). Cyclin D1-cdk4 induce runx2 ubiquitination and degradation. J. Biol. Chem. 281, 16347-16353.   DOI
41 Shin, H.R., Bae, H.S., Kim, B.S., Yoon, H.I., Cho, Y.D., Kim, W.J., Choi, K.Y., Lee, Y.S., Woo, K.M., Baek, J.H., et al. (2018). PIN1 is a new therapeutic target of craniosynostosis. Hum. Mol. Genet. 27, 3827-3839.
42 Stewart, M., Terry, A., Hu, M., O'Hara, M., Blyth, K., Baxter, E., Cameron, E., Onions, D.E., and Neil, J.C. (1997). Proviral insertions induce the expression of bone-specific isoforms of PEBP2alphaA (CBFA1): evidence for a new myc collaborating oncogene. Proc. Natl. Acad. Sci. U. S. A. 94, 8646-8651.   DOI
43 Su, N., Jin, M., and Chen, L. (2014). Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models. Bone Res. 2, 14003.   DOI
44 Wang, Q., Stacy, T., Binder, M., Marin-Padilla, M., Sharpe, A.H., and Speck, N.A. (1996). Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc. Natl. Acad. Sci. U. S. A. 93, 3444-3449.   DOI
45 Choi, K.Y., Lee, S.W., Park, M.H., Bae, Y.C., Shin, H.I., Nam, S., Kim, Y.J., Kim, H.J., and Ryoo, H.M. (2002). Spatio-temporal expression patterns of Runx2 isoforms in early skeletogenesis. Exp. Mol. Med. 34, 426-433.   DOI
46 Choi, Y.H., Kim, Y.J., Jeong, H.M., Jin, Y.H., Yeo, C.Y., and Lee, K.Y. (2014). Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation. FEBS J. 281, 3656-3666.   DOI
47 Thacker, G., Kumar, Y., Khan, M.P., Shukla, N., Kapoor, I., Kanaujiya, J.K., Lochab, S., Ahmed, S., Sanyal, S., Chattopadhyay, N., et al. (2016). Skp2 inhibits osteogenesis by promoting ubiquitin-proteasome degradation of Runx2. Biochim. Biophys. Acta 1863, 510-519.   DOI
48 Thirunavukkarasu, K., Mahajan, M., McLarren, K.W., Stifani, S., and Karsenty, G. (1998). Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol. Cell. Biol. 18, 4197-4208.   DOI
49 Vortkamp, A., Lee, K., Lanske, B., Segre, G.V., Kronenberg, H.M., and Tabin, C.J. (1996). Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613-622.   DOI
50 Westendorf, J.J., Zaidi, S.K., Cascino, J.E., Kahler, R., van Wijnen, A.J., Lian, J.B., Yoshida, M., Stein, G.S., and Li, X. (2002). Runx2 (Cbfa1, AML-3) interacts with histone deacetylase 6 and represses the p21(CIP1/WAF1) promoter. Mol. Cell. Biol. 22, 7982-7992.   DOI
51 Xiao, G., Jiang, D., Gopalakrishnan, R., and Franceschi, R.T. (2002). Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J. Biol. Chem. 277, 36181-36187.   DOI
52 Xiao, G., Jiang, D., Thomas, P., Benson, M.D., Guan, K., Karsenty, G., and Franceschi, R.T. (2000). MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J. Biol. Chem. 275, 4453-4459.   DOI
53 Zhang, Z., Deepak, V., Meng, L., Wang, L., Li, Y., Jiang, Q., Zeng, X., and Liu, W. (2012). Analysis of HDAC1-mediated regulation of Runx2-induced osteopontin gene expression in C3h10t1/2 cells. Biotechnol. Lett. 34, 197-203.   DOI
54 Yoon, W.J., Cho, Y.D., Kim, W.J., Bae, H.S., Islam, R., Woo, K.M., Baek, J.H., Bae, S.C., and Ryoo, H.M. (2014). Prolyl isomerase Pin1-mediated conformational change and subnuclear focal accumulation of Runx2 are crucial for fibroblast growth factor 2 (FGF2)-induced osteoblast differentiation. J. Biol. Chem. 289, 8828-8838.   DOI
55 Yoon, W.J., Islam, R., Cho, Y.D., Woo, K.M., Baek, J.H., Uchida, T., Komori, T., van Wijnen, A., Stein, J.L., Lian, J.B., et al. (2013). Pin1-mediated Runx2 modification is critical for skeletal development. J. Cell Physiol. 228, 2377-2385.   DOI
56 Zaidi, S.K., Javed, A., Choi, J.Y., van Wijnen, A.J., Stein, J.L., Lian, J.B., and Stein, G.S. (2001). A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene. J. Cell Sci. 114, 3093-3102.   DOI
57 Jeon, E.J., Lee, K.Y., Choi, N.S., Lee, M.H., Kim, H.N., Jin, Y.H., Ryoo, H.M., Choi, J.Y., Yoshida, M., Nishino, N., et al. (2006). Bone morphogenetic protein-2 stimulates Runx2 acetylation. J. Biol. Chem. 281, 16502-16511.   DOI
58 Dikic, I., Wakatsuki, S., and Walters, K.J. (2009). Ubiquitin-binding domains - from structures to functions. Nat. Rev. Mol. Cell Biol. 10, 659-671.   DOI
59 Ducy, P. and Karsenty, G. (1995). Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol. Cell. Biol. 15, 1858-1869.   DOI
60 Inoue, K., Ozaki, S., Shiga, T., Ito, K., Masuda, T., Okado, N., Iseda, T., Kawaguchi, S., Ogawa, M., Bae, S.C., et al. (2002). Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat. Neurosci. 5, 946-954.   DOI
61 Jiang, Z.G. and McKnight, C.J. (2006). A phosphorylation-induced conformation change in dematin headpiece. Structure 14, 379-387.   DOI
62 Mantovani, F., Tocco, F., Girardini, J., Smith, P., Gasco, M., Lu, X., Crook, T., and Del Sal, G. (2007). The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat. Struct. Mol. Biol. 14, 912-920.   DOI