• 제목/요약/키워드: Runway safety

검색결과 43건 처리시간 0.025초

국내 민간조종사-관제사의 항공영어 수용오류의 인지적 특성측정 및 평가 (An Analytic Study of the cognitive features of the Korean civilian pilot-ATC controller aviation English language use which affects job performance)

  • 신현삼
    • 대한안전경영과학회지
    • /
    • 제9권6호
    • /
    • pp.81-88
    • /
    • 2007
  • This study deals with the overall meta-cognitive aspects of ATC-Pilot miscommunications pertinent to cognitive human errors based on the previous literature research which it has been focused on the issue of the global aviation English use in regard with aircraft accident and incident. Especially, it addresses the concern over the ICAO aviation English language proficiency evaluation program which will be implemented globally in March, 2008. In addition, It presents the analysis related to the on-going English language proficiency level four test conducted for Korean civil airlines pilots and air traffic controllers.

특정 조건의 비행장에서 장애물제한규정 적용 사례연구 (A Case Study on Application of Obstacle Limitation Criteria for Specific Conditions of Airports)

  • 김도현;김웅이
    • 한국항공운항학회지
    • /
    • 제24권2호
    • /
    • pp.25-30
    • /
    • 2016
  • Obstacle defines all fixed and mobile objects, or parts thereof, that are located on an area intended for the surface movement of aircraft or extend above a defined surface intended to protect aircraft in flight or stand outside those defined surfaces and that have been assessed as being a hazard to air navigation. The airspace around airports are maintained free from obstacles so as to permit the intended aeroplane operations at the airports to be conducted safely and to prevent the airports from becoming unusable by the growth of obstacles around the airports. This is achieved by establishing a series of obstacle limitation surfaces or airspace imaginary surfaces that define the limits to which objects may project into the airspace. This is a case study that shows an application of obstacle limitation criteria, which must be maintained free from an critical obstacle, for specific conditions of two airports. For the purpose of the application, aeronautical studies/flight safety influence assessments were used to identify possible solutions and select a solution that is acceptable without degrading aviation safety.

커머셜 항공기 에어 데이터 시스템의 인적오류 분석과 안전에 미치는 영향에 관한 연구 (Analysis of Human Errors in a Commercial Aircraft Air Data System and their Influence on Air Safety)

  • 박세종;전언찬
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.87-93
    • /
    • 2020
  • A key component of aviation safety is to eliminate the errors in commercial aircraft air data systems to ensure stable aviation operation. Although the technical aspects such as the maintenance and inspection play a pertinent role, human errors are expected to have a similar or even larger influence on the aviation safety. Aviation maintenance and inspection tasks are often performed by a complex organization, in which individuals perform a variety of tasks in an environment involving time pressure, sparse feedback, and complex conditions. These situational characteristics, combined with the general tendency of human error, may lead to various types of errors, which may have critical consequences such as accidents and loss of life. For instance, if an amber message "IAS DISAGREE" is displayed on the primary flight display while the aircraft is rolling on the runway to takeoff, the crew immediately performs a rejected takeoff operation and troubleshoots the air data system. This paper proposes alternative approaches to address the occurrence of defects due to the human factors involved in the practical processes of the air data system of commercial aircraft.

유전 알고리즘을 활용한 전기 자동차 배터리 방열성능 향상을 위한 가이드 베인 최적설계 (Optimal Design of Guide Vane for Improvement of Heat Removal Performance of Electric Vehicles Battery Using Genetic Algorithm)

  • 송지훈;김윤제
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.55-61
    • /
    • 2022
  • Along with global environmental issues, the size of the electric vehicle market has recently skyrocketed. Various efforts have been made to extend mileage, one of the biggest problems of the electric vehicles, and development of batteries with high energy densities has led to exponential growth in mileage and performance. However, proper thermal management is essential because these high-performance batteries are affected by continuous heat generation and can cause fires due to thermal runaway phenomena. Therefore, thermal management of the battery is studied through the optimal design of the guide vanes, while utilizing the existing battery casing to ensure the safety of the electric vehicles. A battery from T-company, one of a manufacturer of the electric vehicles, was used for the research, and the commercial CFD software, ANSYS CFX V20.2, was used for analysis. The guide vanes were derived through optimal design based on a genetic algorithm with flow analysis. The optimized guide vanes show improved heat removal performance.

크랩랜딩(Crab Landing) QAR(Quick Access Recorder) 비행 데이터 통계분석 모델 (Crab Landing QAR (Quick Access Recorder) Flight Data Statistical Analysis Model)

  • 전제형;김현덕
    • 한국항행학회논문지
    • /
    • 제28권2호
    • /
    • pp.185-192
    • /
    • 2024
  • 항공산업은 기술적인 혁신을 통해 안전성을 향상했으며, 항공 당국의 안전 규제와 감독을 통해 비행안전을 강화해 왔다. 항공산업의 안전 접근 방식이 항공기 시스템 전체에 대한 체계적인 접근 방식으로 발전함으로써 항공사는 새로운 안전 관리시스템을 구축하게 되었다. 항공기의 기술적 결함이나 비정상적인 데이터는 사고로 이어질 수 있는 전조 징후가 될 수 있으며, 이러한 징후를 조기에 식별하고 대처함으로써 사고 발생의 위험을 감소시킬 수 있다. 따라서 비정상적인 전조 징후의 관리는 데이터 기반 의사결정을 촉진하고, 항공사의 운영 효율성 및 안전수준을 강화하는 데 있어 필수적인 요소이다. 본 연구에서는 항공기 착륙 시에 활주로 이탈로 이어질 수 있는 크랩랜딩 이벤트의 패턴과 원인 분석을 위한 사전적 분석 단계에서 QAR (quick access recorder) 비행 데이터 통계 분석 모델을 제시하여 착륙 이벤트의 전조 징후와 원인을 식별 및 제거하는 안전관리의 효율성을 제고하고자 한다.

선회접근용 활주로 감시도구의 개선에 관한 실증적 사례 연구 (An Empirical case Study on the Improvement of Surveillance Systems in performing Circling Approach at the airport)

  • 양한모;신현삼
    • 한국항공운항학회지
    • /
    • 제14권4호
    • /
    • pp.110-119
    • /
    • 2006
  • This research was conducted with a view to enhance the efficiency of the preventive tool which provide pilots and controllers with proper and timely safety alerts while conducting circling approach at the airport where surrounding terrains becomes threat to safe operation of flight around airport.

  • PDF

항공기 외장형 포드 장착장비의 주행 안정성 분석 (Stability Analysis of an Mounting Equipment for External Pod on Aircraft by Road Test)

  • 이종학;장종윤;강영식;최지호;강동석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.424-429
    • /
    • 2013
  • The trolley carrying the pod moves along by the airfield runway. The pod through the trolley are subjected to vibration arising from the ground state, the precision optical components in the pod can have a significant impact. The road tests were conducted by using the measurement pod to remove the risk for the project. The measurement pod was composed with the ACRA, sensors, battery. The accelerometers were attached to get the acceleration through the road condition. The PSD envelop was calculated by FFT from the acceleration. The driving safety was proven through comparing the measurement data and MIL-STD-810G specification.

  • PDF

고흥항공센터 ADS-B 구축 및 운용시험 (Implementation and Operational Test of ADS-B System in Goheung Aeronautical Center)

  • 유창선;송복섭;조암;성기정;구삼옥
    • 항공우주기술
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 2014
  • 고흥항공센터는 전남 고흥 간척지에 위치하며 길이 700m, 폭 25m의 활주로를 통해 국내에서 개발된 무인기의 비행시험장으로 활용되고 있으며 비행체 조립 및 점검을 위한 시험동을 갖추고 있다. 항공센터에서 이루어지는 개발 항공기들의 항공안전을 위하여 비행시험 지원설비를 구축하고 있으며 현재 지상감시시설로서 1090ES ADS-B를 구축하였다. ADS-B는 차세대 항행감시 장비로서 위성항법과 데이터 통신을 기반으로 항행정보를 실시간으로 공유할 수 있으며 구축된 ADS-B 지상국과 ADS-B 송신기간 지상 및 비행시험을 통하여 ADS-B 지상국의 정상적인 운용과 비행시험 활용 가능성을 확인하였다.

A Study on the Longitudinal and Lateral Errors of Air Vehicle Heading for Auto-landing

  • Park, Ji Hee;Park, Hong Sick;Shin, Chul Su;Jo, Young-Wo;Shin, Dong-Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제2권2호
    • /
    • pp.115-121
    • /
    • 2013
  • For the auto-landing operation of an air vehicle, the possibility of auto-landing operation should be first evaluated by testing the navigation performance through a flight test. In general, navigation performance is tested by analyzing north/east/down (NED) errors relative to reference equipment whose precision is about 8~10 times higher than that of a navigation system. However, to evaluate the auto-landing operation of an air vehicle, whether the air vehicle approaches a glide path aligned with the runway, within a specific error, needs to be examined rather than examining the north/east errors of the navigation system. Therefore, the longitudinal/lateral errors of air vehicle heading need to be analyzed. In this study, a method for analyzing the longitudinal/lateral errors of a navigation system was proposed as the navigation performance test method for evaluating the safety during the auto-landing of an air vehicle. Also, flight tests were performed six times, and the safety of auto-landing was examined by analyzing the performance using the proposed method.

운항승무원 실수 특성에 관한 연구 : LOSA를 중심으로 (A study on the characteristics on the error of the flight crew)

  • 최진국;김칠영
    • 한국항공운항학회지
    • /
    • 제17권2호
    • /
    • pp.62-67
    • /
    • 2009
  • LOSA is a flight safety program that analyses human errors in normal operations. Trained pilot observers monitor the normal flights at the observer seat. LOSA is a proactive non jeopardy data collection tool using threat and error management(TEM) as a framework. With the analysis of crew behaviors through LOSA with The LOSA collaborative(TLC), the airlines can identify the behaviors of the crew during normal operations. The major objective of LOSA is to measure how the crew manage threats, errors and undesired aircraft deviations in the cockpit on day to day operations. The airlines are able to set up effective TEM training with practical six generation Crew recourse management(CRM) with data of error from LOSA instead of theoretical CRM courses. The Airlines can use TEM as an integral part of a Safety Management System(SMS) and uses monitoring and cross-checking skills in the flight operations to manage threats and errors effectively when we know the errors we make in the cockpit on daily operation. The result of LOSA indicates that the error detection rate should be enhanced since around the half of the errors went undetected. The areas which should be focused for enhancing the error detection are monitor, cross-check, the management of workload, automation and taxiway/ runway to manage errors effectively.

  • PDF