• 제목/요약/키워드: Runoff water quality

검색결과 579건 처리시간 0.03초

도시유역에서의 유출 및 수질해석 모형 (Urban Runoff and Water Quality Models)

  • 이종태
    • 한국수자원학회논문집
    • /
    • 제31권6호
    • /
    • pp.709-725
    • /
    • 1998
  • 도시하천의 유출 및 수질특성을 홍제천 시험유역에서의 관측자료에 의하여 분석하였다. 시험유역의 수질은 건기시차집 관로에 의한 하수의 차단으로 비교적 양호한 수질을 보이는 반면, 이로 인하여 동기의 약 3-4개월동안에는 건천화의 현상을 보였다. 한편, 우기시에는 합류식 하수계통으로부터의 급격한 비점원 오염부하량의 증대를 보였다. 도시유출 및 수질을 해석하는 모형, SWMM, ILLUDAS, STORM, HEC-1 등을 적용하고 그 결과를 비교분석하였다. 또한, 시험유역에 대한 유출·수질상관식을 도출하고 그 적용성을 검토하였다. 검토 모형들은 전반적으로 양호한 적용성을 보였으며, 유출과 수질해석의 양면에서 SWMM이 검토모형중에서 가장 우수한 것으로 판단된다. 또한, 실측자료에 근거한 유출·수질상관 모형을 도출하였으며 우기시의 오탁부하량의 근사산정에 효과적인 것으로 판단되었으나, 유량이 관측 자료의 범위를 벗어나면 그 정확도가 크게 떨어졌다. 이 모형은 대상 유역의 관측자료 확충으로 보완되어 나가야 할 것이다. 한편 현재 실무에서 널리 사용되는 HEC-1도 도시유역에서 경제적으로 활용될 수 있을 것으로 판단된다.

  • PDF

농촌유역 환경개선을 위한 용수공급체계 재정비 (Rural watershed Water Quality and Environmental Improvement through Rearrangement of Irrigation Water Supply Systems)

  • 이광야;김해도;최선화
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.515-520
    • /
    • 2005
  • The objective of the study is to assess the water quality improvement resulted from the rearrangement of the irrigation water supply systems at Mankyeong River and Ansung Chun basin. There is a mixed type of watershed composed of urban and rural areas in the region. From the water quality analysis, showed high T-N, T-P concentration in Ansung chun and Mankyeong river caused by paddies separated widely around Ansung chun and Mankyeong river and by runoff of the pollution from the Ansung and Jeonju city. but the upstream of the river showed clean water quality, so if we use the upstream water as river maintenance water for water quality improvement, it is expected to be positive effect for rural environmental aspect.

  • PDF

아시아 몬순지역의 대형댐(소양호)에서의 인순환과 2차원모델의 적용 (Phosphorus Cycle in a Deep Reservoir in Asian Monsoon Are3 (Lake Soyang, Korea) and the Modeling with a 2-D Hydrodynamic Water Quality Model [CE-QUAL-W2])

  • 김윤희;김범철
    • 생태와환경
    • /
    • 제37권2호통권107호
    • /
    • pp.205-212
    • /
    • 2004
  • 아시아 몬순지역에서 대형댐의 인순환(phosphorus cycle)과정의 특징을 파악하기 위하여 소양호를 대상으로 인순환 과정을 조사하였다. 또한, 이를 모의하기 위해 2차원 수질모델인 CE-QUAL-W2를 적용하여 수중생태계의 물질순환과정을 모의하였다. 소양호는 수심이 깊고성층이 강하여 수직적인 변이가 뚜렷한 인의 분포를 보였다. 인의 부하량은 유역면적의 90%를 차지하는 주유입하천인 소양강의 인농도를 측정하여 산정하였다. 소양강의 인농도는 강우시 유량 증가에 따라 크게 증가하는 변동을 보였으므로 인의 부하량은 간헐적으로 발생하는 폭우 유출에 집중되었다. 폭우시 유출수는 수온이 낮아지기 때문에 호수의 중층으로 잠류하여 중층 탁수대를 형성하는 것으로 관측되었다. 여름 우기가 끝난 후 중층에는 두께 20${\sim}$30m의 인함량이 높은 탁수층이 형성되었으며 이탁수층은 댐 중간수심에 만들어진 발전방류구를 통하여 서서히 방류되었다. CE-QUAL-W2 모델은 호우시 탁수의 잠류현상과 인함량이 높은 중층의 형성, 인의 수평수직분포 등의 인순환 과정이 잘 모의 하여,아시아 몬순지역의 댐에서 수질모델로서 육수학적 현상을 잘 모의하는 것으로 평가된다.

강우유출수의 침투시 부하저감을 위한 경사관 침전장치의 효율평가 (Evaluation of Particle Removal Rate in Inclined-pipe Settling System for Stormwater Infiltration)

  • 김상래;김동근;문정수;한무영
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.719-726
    • /
    • 2009
  • One of the alternative runoff management measures is on-site runoff mitigation, such as rainwater retention tank and infiltration facilities especially the latter that is possible to manage simultaneously runoff quality and quantity as a perspective of water-cycle. This study was conducted to develop a particle separator, inclined-pipe settling system, that could improve particle removal efficiency of road runoff as a pre-treatment device of stormwater infiltration. Solid particles larger than $100{\mu}m$ are separated by simple sedimentation; however, the significant amount of pollutants with a diameter less than $100{\mu}m$ remain in suspension. Without any treatment in that case of the runoff into infiltrate, groundwater would be deteriorated and also infiltration rate would be decreased by clogging. Therefore, we suggest optimal design parameters (inclined angle, pipe length, and surface loading rate) of inclined-pipe settling system which can be designed to effectively remove particles diameter smaller then $70{\mu}m$. Thus, the results showed TSS removal efficiency more than 80% with a particle diameter between $20{\mu}m$ and $70{\mu}m$, 100% above particle diameter $70{\mu}m$ for the inflow rate $0.018 m^3/m^2{\cdot}hr$ with pipe inclined at angle $15^{\circ}$.

우수유출수의 도시하천 유지유량 활용을 위한 지하저류시스템 개발 (Development of the Sub-soil Storage System for Utilization Urban Instream Flow of Rainfall Runoff)

  • 최계운;최종영;김석봉
    • 한국수자원학회논문집
    • /
    • 제37권2호
    • /
    • pp.163-172
    • /
    • 2004
  • 본 연구에서는 우수유출수의 도시하천 유지유량 활용을 위한 지하저류시스템을 개발하고 실험을 통하여 적용성을 검토하였다. 이를 위해 5m${\times}$5m 크기의 유출면적에 인공강우장치와 지하저류시설을 설치하고, 인공강우 실험과 실제 강우 실험을 통하여 유출수의 수질개선 효과와 저류 효과를 분석하였다. 강우강도를 20mm/hr, 30mm/hr, 40mm/hr, 50mm/hr로 조절하여 인공강우 실험을 실시한 결과, 지하저류시스템에 의한 유출수의 SS농도 저감은 평균 68%로 나타났으며, 저류율은 42.8%∼79.9%로 나타났다. 총 3회에 걸친 실제강우 실험에서는 BOD, CO $D_{Mn}$ , SS, T-N, T-P의 평균 여과율은 각각 30%, 42%, 68%, 39%, 26%로 나타났다. 본 실험을 통하여 지하저류시스템에 의한 우수유출수의 수질개선과 유출량 저감 효과가 상당히 큰 것으로 나타났으며, 지하저류시설에 저류된 우수유출수는 하천유지용수 등으로 사용이 가능할 것으로 판단된다.

청양-홍성간 도로에서의 강우 시 비점오염 유출특성 및 오염부하량 분석 (Runoff Characteristics and Non-point Source Pollution Loads from Cheongyang-Hongseong Road)

  • 이춘원;강선홍;안태웅;양주경
    • 상하수도학회지
    • /
    • 제25권2호
    • /
    • pp.265-274
    • /
    • 2011
  • Nowadays, the importance of non-point source pollution treatment is being emphasized. Especially, the easy runoff characteristic of highly concentrated pollutants in the roads makes the circumstance more complicated due to impermeability of roads. When the pollutants flow into steam it could make water quality in stream worse and it also causes a bad influence in the aquatic ecosystem because the effluents of rainfall-runoff may contain indecomposable materials like oil and heavy metals. Therefore, we tried to figure out the property of non-point source pollution when it is raining and carried out an assessment for the property of runoff for non-point source pollution and EMC (Event Mean Concentrations) of the essential pollutants during this study. As the result of the study, the EMC was BOD 5.2~21.7 mg/L, COD 7.5~35.4 mg/L, TSS 71.5~466.1 mg/L, T-N 0.682~1.789 mg/L and T-P 0.174~0.378 mg/L, respectively. The decreasing rate of non-point pollutant in Chungyang-Hongsung road indicates the maximum decrease of 80% until 5 mm of rainfall based on SS concentration; by the rainy time within 20~30 minutes, the decreasing rate of SS concentration was shown as 88.0~97.6%. Therefore it was concluded that it seems to be possibly control non-point pollutants if we install equipments to treat non-point pollutants with holding capacity of 30 min. It is supposed that the result of this study could be used for non-point pollutants treatment of roads in Chungyang-Hongsung area. We also want to systematically study and consistently prepare the efficient management of runoff from non-point source pollution and pollutant loading because the characteristics of non-point source pollution runoff changes depending on different characteristics and situations of roads and rainfall.

현장유출영상을 활용한 표면영상유속계(SIV)의 상관계수 분석 (Analysis on Correlation Coefficient of Surface Image Velocimeter (SIV) Using On-site Runoff Image)

  • 김용석;양성기;김동수;김서준
    • 한국환경과학회지
    • /
    • 제24권4호
    • /
    • pp.403-414
    • /
    • 2015
  • This study is daytime and nighttime runoff image data caused by heavy rain on May 27, 2013 at Oedo Water Treatment Plant of Oedo-Stream, Jeju to compute runoff by applying Surface image velocimeter (SIV) and analyzing correlation according to current. At the same time, current was comparatively analyzed using ADCP observation data and fixed electromagnetic surface current meter (Kalesto) observed at the runoff site. As a result of comparison on resolutions of daytime and nighttime runoff images collected, correlation coefficient corresponding to the range of 0.6~0.7 was 6.8% higher for nighttime runoff image compared to daytime runoff image. On the contrary, correlation coefficient corresponding to the range of 0.9~1.0 was 17% lower. This result implies that nighttime runoff image has lower image quality than daytime runoff image. In the process of computing current using SIV, a rational filtering process for correlation coefficient is needed according to images obtained.

Factors affecting the infiltration rate and removal of suspended solids in gravel-filled stormwater management structures

  • Guerra, Heidi B.;Yuan, Qingke;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.67-74
    • /
    • 2019
  • Apparent changes in the natural hydrologic cycle causing more frequent floods in urban areas and surface water quality impairment have led stormwater management solutions towards the use of green and sustainable practices that aims to replicate pre-urbanization hydrology. Among the widely documented applications are infiltration techniques that temporarily store rainfall runoff while promoting evapotranspiration, groundwater recharge through infiltration, and diffuse pollutant reduction. In this study, a laboratory-scale infiltration device was built to be able to observe and determine the factors affecting flow variations and corresponding solids removal through a series of experiments employing semi-synthetic stormwater runoff. Results reveal that runoff and solids reduction is greatly influenced by the infiltration capability of the underlying soil which is also affected by rainfall intensity and the available depth for water storage. For gravel-filled structures, a depth of at least 1 m and subsoil infiltration rates of not more than 200 mm/h are suggested for optimum volume reduction and pollutant removal. Moreover, it was found that the length of the structure is more critical than the depth for applications in low infiltration soils. These findings provide a contribution to existing guidelines and current understanding in design and applicability of infiltration systems.

도시 및 농촌 유역 하천에서의 강우유출 특성 비교 (Comparison of Rainfall-Runoff Characteristics at Stream in Urban and Rural Watershed)

  • 김호섭;김상용;박윤희
    • 한국물환경학회지
    • /
    • 제34권6호
    • /
    • pp.650-660
    • /
    • 2018
  • The objective of this study was to compare the rainfall-runoff characteristics in streams of classified urban and rural watershed using land use and population density. EMC (event mean concentration) of BOD, COD, TP and SS increased significantly in urban and rural watershed, but that of TN remained unchanged. Although there were no significant differences in EMC of BOD, COD, TN, TP depending on the watershed characteristics, EMC of BOD and COD significantly increased in the urban watershed, while EMC of TP increased in the rural watershed. In the urban watershed, the first flush time was faster and the first flush effect was stronger in BOD, COD, and TP. However, the difference between cumulative mass and cumulative volume was found to be less than 0.2 in the rural watershed, indicating a weak first flush effect. The discharged masses of BOD (70 %), COD (64 %), and TP (66 %) in the first flush of runoff were higher in urban watershed, while TN (67 %) was higher in rural watershed. The reproducibility of first flush time and the strength of first flush using CV (coefficient of variation) was found to be more reproducible for first flush time in both watersheds. In rural watershed, the CV value of first flush time for TP out of water quality parameters was lower. Whereas the CV values of first flush time for BOD, COD and TP in urban watersheds were similar.

논 관개수, 담수 및 유출수의 용존인과 총인 농도 변화 (Variations of Dissolved and Total Phosphorus Concentrations in Irrigation, Flooding, and Drainage Water of Paddy Fields)

  • 최동호;조소현;정재운;박현규;최우정;윤광식;김영석
    • 한국물환경학회지
    • /
    • 제33권4호
    • /
    • pp.434-440
    • /
    • 2017
  • In order to understand the characteristics of phosphorus in the paddy field, this study analyzed $PO_4-P$ and T-P concentrations of irrigation water, flooding water, and runoff from 2008 to 2010. The variation of phosphorous form within hydrologic cycle around the rice paddy field was investigated using the ratio of $PO_4-P$ to TP. In addition, the correlation between pH, EC, and DO in flooding water was analyzed and the factors affecting phosphorus form in paddy field were investigated. The concentration of T-P in flooding water was high during the survey period, and the concentration of T-P in runoff was assumed to be decreased by dilution due to irrigation and rainfall. On the other hand, the ratio of $PO_4-P$ to T-P was lower in flooding water than those of irrigation water and runoff, which was interpreted to be due to the fact that the phosphorus fertilizer was applied in the paddy field but the adsorption was rapidly occurred to the paddy field by the soil. The similar proportions of $PO_4-P$ to T-P in flooding water and runoff suggest that the form of phosphorus outflowed from the paddy is influenced by the form of phosphorus in the flooding water of paddy field. In addition, DO concentration in flooding water showed negative correlation with the concentrations of $PO_4-P$ and T-P. The effort to survey frequent irrigation water quality data is required for the analysis of phosphorus behavior in the paddy water system since concentration of phosphorous and DO in irrigation water would influence rhe form of phosphorous in flooding water and subsequent runoff.