• Title/Summary/Keyword: Runoff flow

Search Result 874, Processing Time 0.028 seconds

Development of Coupled SWAT-SWMM Model (I) Model Development (SWAT-SWMM 결합모형의 개발 (I) 모형의 개발)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.589-598
    • /
    • 2004
  • From the continuous long-term rainfall-runoff standpoint, the urbanization within a watershed causes land use change due to the increase in impervious areas, the addition of manmade structures, and the changes in river environment. Therefore, rainfall-runoff characteristics changes drastically after the urbanization. Due to these reasons, there exists the demand for rainfall-runoff simulation model that can quantitatively evaluate the components of hydrologic cycle including surface runoff, river flow, and groundwater by considering urban watershed characteristics as well as natural runoff characteristics. In this study, continuous long-term rainfall-runoff simulation model SWAT-SWMM is developed by coupling semi-distributed continuous long-term rainfall-runoff simulation model SWAT with RUNOFF block of SWMM, which is frequently used in the runoff analysis of urban areas in order to consider urban watershed as well as natural watershed. The coupling of SWAT and SWMM is described with emphasis on the coupling scheme, model limitations, and the schematics of coupled model.

Development and Evaluation of a Real Time Runoff Modelling System using Weather Radar and Distributed Model (기상레이더와 분포형 모형을 이용한 실시간 유출해석 시스템 개발 및 평가)

  • Choi, Yun Seok;Kim, Kyung Tak;Kim, Joo Hun
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.385-397
    • /
    • 2012
  • A grid based physically distributed model analyzes rainfall-runoff using physical parameters and grid-typed spatial and hydrological data. This study have developed a real time runoff modelling system using GRM RT(Grid based Rainfall-runoff Model Real Time) which is a real time flow analysis module in GRM, a grid based physically distributed rainfall-runoff model. Weather radar data received in real time are calibrated by using real time AWS from Korea Meteorological Administration(KMA), and they are applied to real time runoff modeling. And the runoff model is calibrated by using observed discharges from a water level gauge in real time. This study have designed and implemented the databases necessary to construct the real time runoff modelling system, and established the process of a real time runoff modelling. And the performances of the developed system have been evaluated. The system have been applied to Nerinheon watershed located in the upstream of Soyanggang Dam and the application results are evaluated.

A Development of Simplified Design Method of the Detention Pond for the Reduction of Runoff (우수유출저감용 저류지의 간편설계기법 개발)

  • Lee, Jae-Joon;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.693-700
    • /
    • 2008
  • Detention pond has an important role in peak flow reduction to mitigate flood damage. Design of detention pond is accomplished through the preliminary stage, and design stage in general. New development projects produce increased peak flow and flow amounts. In this case it is necessary to design the detention pond easily and simply. A simplified design method of the detention pond is suggested in this study. Used design variables are peak flow ratio(${\alpha}$) and storage ratio($S_r$). ${\alpha}$ is the peak flow ratio of before and after development of the basin. $S_r$ is a ratio of storage volume to total runoff volume. Applicability of the proposed method was also proved. The simple procedure of detention pond design is proposed in this study.

Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed (II) - Establishment of Intercepting Capacity and Reduction Goal of Overflow Pollution Load - (오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(II) - 차집용량과 월류오염부하 삭감목표 설정 -)

  • Lee, Doojin;Shin, EungBai
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.557-564
    • /
    • 2005
  • The objective of this study is to evaluate a criteria of intercepting capacity and a reduction goal of overflow pollution load in combined sewer system. In the current criteria of intercepting capacity in the domestic sewage facility standard, it is known that three times of peak sewage (Q) in dry period or runoff flow by 2mm/hr is not appropriate since the intercepted flow is estimated by runoff and show different result even in the same watershed. Though a reduction goal of overflow pollution load can be determined from 1) same level of storm-water runoff pollution load in separated storm sewer, 2) less than 5% sewage load in dry weather period, by the domestic sewage facility standard, the simulated results from storm-water model show large differences between two criteria. While it is predicted that sewage pollution load standard three time larger than separated storm sewer standard in high population density and urbanized area, it is shown that separate storm sewer standard larger than sewage pollution load standard in middle population density and developing area. Accordingly, it is proposed that more reasonable intercepting flow and reduction goal of overflows pollution load should be established to minimize discharging pollution load in combined sewer systems. For the purpose, a resonable standard has to be amended by pollution load balance considering the characteristics of a watershed for generation, collection, treatment, and discharging flow.

Characteristics of Runoff and Groundwater Quality from a Pasture and Field (방목지와 초지의 지표수 및 지하수 수질 특성)

  • Choe, Jung-Dae;Choe, Ye-Hwan;Kim, Gi-Seong
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.175-186
    • /
    • 1995
  • Characteristics of runoff and groundwater qualities from a pasture and field were investigated. Flumes and monitoring wells were installed and water qualities of $NO_3$-N, TP and TKN were monitored from Aug. 1993 to Aug. 1994. Runoff from the pasture which was a sandy soil with cobbles mostly formed with seeping water at the bottom of it. But once overland flow occurred because of heavy rainfall, runoff increased sharply. $NO_3$-N concentration in pasture runoff was relatively stable ranging between 0.241-3.962mg/l. TP and TKN concentrations were stable but sharply increased once overland flow occurred. $NO_3$-N concentration in pasture groundwater was relatively stable regardless of depth of monitoring wells but TP and TKN concentrations were smaller in deeper wells. Runoff from the field which was flat and covered well with Sudan grass and surface residue was relatively small and $NO_3$-N, TP and TKN concentrations in runoff were stable and seemed unaffected by flow rate. $NO_3$-N concentration in field groundwater increased at the rate of 2.2mg/l per 100 m during a growing season as groundwater flows through the field. No significant differences in TP and TKN concentrations between the upper and lower areas in field groundwater were detected.

  • PDF

Quantifying the effects of climate variability and human activities on runoff for Vugia - Thu Bon River Basin in Central of Viet Nam

  • Lan, Pham Thi Huong;Thai, Nguyen Canh;Quang, Tran Viet;Long, Ngo Le
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.233-233
    • /
    • 2015
  • Vu Gia - Thu Bon basin is located in central Vietnam between Truong Son mountain range on the border with Lao in the west and the East Sea in the east. The basin occupies about 10,350 km2 or roughly 90% of the Quang Nam Province and includes Da Nang, a very large city with about 876,000 inhabitants. Total annual rainfall ranges from about 2,000 mm in central and downstream areas to more than 4,000 mm in southern mountainous areas. Rainfall during the monsoon season accounts for 65 to 80% of total annual rainfall. The highest amount of rainfall occurs in October and November which accounts for 40 to 50% of the annual rainfall. Rainfall in the dry season represents about 20 to 35% of the total annual rainfall. The low rainfall season usually occurs from February to April, accounting for only 3 to 5% of the total annual rainfall. The mean annual flow volume in the basin is $19.1{\times}109m 3$. Similar to the distribution of rainfall, annual flows are distinguished by two distinct seasons (the flood season and the low-flow season). The flood season commonly starts in the mid-September and ends in early January. Flows during the flood season account for 62 to 69% of the total annual water volume, while flows in the dry season comprise 22 to 38% of total annual run-off. The water volume gauged in November, the highest flow month, accounts for 26 to 31% of the total annual run-off while the driest period is April with flows of 2 to 3% of the total annual run-off. There are some hydropower projects in the Vu Gia - Thu Bon basin as the cascade of Song Bung 2, Song Bung 4, and Song Bung 5, the A Vuong project currently under construction, the Dak Mi 1 and Dak Mi 4 projects on the Khai tributary, and the Song Con project on the Con River. Both the Khai tributary and the Song Con join the Bung River downstream of SB5, although the Dak Mi 4 project involves an inter-basin diversion to Thu Bon. Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Vu Gia - Thu Bon River Basin in the central of Viet Nam were analyzed to investigate changes in annual runoff during the period of 1977-2010. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. The hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  • PDF

Urban Runoff Network Flow Velocity Monitoring System Using Ubiquitous Technique and GIS (Ubiquitous 기술과 GIS를 이용한 도시배수관망 유속측정 시스템 개발)

  • Choi, Changwon;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.479-486
    • /
    • 2010
  • Reliable hydrologic data acquisition is the basic and essential requirement for efficient water management. Especially the acquisition of various stream data in a certain location is very important to construct on alarm system to response an urban flood which occurs frequently due to the effect of climate change. Although the frequency of stream inundation flood occurrence becomes low owing to the consistent stream improvement, the urban flood due to the drainage system problems such as deterioration and bad management occurs continuously. The consistent management and current status understanding of the urban drainage system is essential to reduce the urban flood. The purpose of this study is to develop the urban runoff network flow velocity monitoring system which has the capability of collecting stream data whenever, wherever and to whomever without expert knowledge using Code Division Multiple Access technique and Bluetooth near-distance wireless communication technique. The urban runoff network flow velocity monitoring system consists of three stages. In the first stage, the stream information obtained by using ubiquitous floater is transferred to the server computer. In the second stage, the current state of the urban drainage system is assessed through the server computer. In the last stage, the information is provided to the user through a GUI. As a result of applying, the developed urban runoff network flow velocity monitoring system to Woncheon-Stream in Suwon, the information necessary for urban drainage management can be managed in real time.

Runoff Characteristics of Heavy Metals from a Parking Lot by Rainfall (주차장 지역의 강우에 의한 Pb와 Zn의 유출 특성)

  • Im, Jong-Kwon;Son, Hyun-Seok;Kim, Sung-Keun;Zoh, Kyung-Duk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.926-933
    • /
    • 2010
  • Runoff from a parking lot can be highly contaminated nonpoint source due to the impermeability of rainwater. This study presented runoff characteristics of heavy metals especially Zn and Pb from a parking lot during total 17 rain events. Monitoring results showed the first flush phenomenon within 30 min was observed in all rain events, but the event mean concentration (EMC) did not clearly show the characteristics of runoff. The ranges of Pb and Zn was $4{\sim}201{\mu}g/L$ and $131{\sim}672{\mu}g/L$, respectively, and the runoff mass of Zn and Pb was highly to related with the flow rate, and runoff coefficient of rain. The runoff mass of Zn was greater than that of Pb in all events. The runoff mass of Pb was highly correlated with the amount of TSS, and TSS and DOC were was related with the mass of Zn. This result implies that Pb and Zn are mainly existed in the particulate form. The results can be used to as meaningful data in the management of nonpoint source, and in the management in the runoff catchment in the parking lot.

Effects of Calculation Method of Surface Runoff on the Estimation of Flood in Urban Drainage Basin (지표면유출 해석방법이 도시 유역의 홍수량 산정에 미치는 영향)

  • Lee, Jong Tae;Yoon, Sei Eui;Kim, Jung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1167-1175
    • /
    • 1994
  • The effects of the calculation method of surface runoff on the estimation of flood in urban drainage basin were analyzed in this study. In comparing with surface runoff methods. RUNOFF, ILLUDAS, SBUH and RRL were investigated. To route the flow in sewer/conduits EXTRAN was applied. The Kings Creek and Gray Haven drainage basin's measured data of rainfall and runoff were used in comparing the computed results. The results show that the greatest effect factor on surface runoff in urban small area is the concentration time. The results estimated by each model which are composed with EXTRAN show that the scheme for surface runoff gives considerable effect on the flood hydrograph in urban drainage system. RUN-EX method gives the most similar simulation results among the surface runoff models, and is more applicable for paved and unpaved basins than others.

  • PDF

Intra-event variability of bacterial composition in stormwater runoff from mixed land use and land cover catchment

  • Paule-Mercado, Ma. Cristina A.;Salim, Imran;Lee, Bum-Yeon;Lee, Chang-Hee;Jahng, Deokjin
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.29-38
    • /
    • 2019
  • Microbial community and composition in stormwater runoff from mixed land use land cover (LULC) catchment with ongoing land development was diverse across the hydrological stage due different environmental parameters (hydrometeorological and physicochemical) and source of runoff. However, limited studies have been made for bacterial composition in this catchment. Therefore, this study aims to: (1) quantify the concentration of fecal indicator bacteria (FIB), stormwater quality and bacterial composition and structure according to hydrological stage; and (2) determine their correlation to environmental parameters. The 454 pyrosequencing was used to determine the bacterial community and composition; while Pearson's correlation was used to determine the correlation among parameters-FIB, stormwater quality, bacterial composition and structure-to environmental parameters. Results demonstrated that the initial and peak runoff has the highest concentration of FIB, stormwater quality and bacterial composition and structure. Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes were dominant bacteria identified in this catchment. Furthermore, the 20 most abundant genera were correlated with runoff duration, average rainfall intensity, runoff volume, runoff flow, temperature, pH, organic matter, nutrients, TSS and turbidity. An increase of FIB and stormwater quality concentration, diversity and richness of bacterial composition and structure in this study was possibly due to leakage from septic tanks, cesspools and latrines; feces of domestic and wild animals; and runoff from forest, destroyed septic system in land development site and urban LULC. Overall, this study will provide an evidence of hydrological stage impacts on the runoff microbiome environment and public health perspective.