• Title/Summary/Keyword: Runoff Curve Numbers(CN)

Search Result 15, Processing Time 0.025 seconds

Estimation of Runoff Depth and Peak Discharge by SCS Curve Numbers and Time Variation of curve Numbers (SCS곡선번호에 의한 유출고 및 첨두유량의 산정과 곡선번호의 시변성)

  • 윤태훈
    • Water for future
    • /
    • v.25 no.4
    • /
    • pp.87-95
    • /
    • 1992
  • The validity of the estimate of runoff depth and peak runoff by the basin runoff curve numbers(CN-II for AMC-II condition and CN-III for AMC-III condition) obtained from hydrologic soil-cover complexs is investigated by making use of the observed curve numbers(median curve number and optimum curve number) computed from rainfall-runoff records. For gaged basins the median curve numbers are recommended for the estimation of runoff depth and peak runoff. For ungaged basins, found is that for the estimate of runoff depth CN-III is adequate and for the peak runoff CN-II is adequate. Also investigated is the variation of curve numbers during rainfall, which is turned out to improve the estimates of both depth and peak of runoff.

  • PDF

Validity of Runoff Curve Number Method for Estimating of Effective Rainfall (유효강우량 산정을 위한 곡선번호방법의 적용성)

  • 윤태훈
    • Water for future
    • /
    • v.24 no.2
    • /
    • pp.97-108
    • /
    • 1991
  • A number of different curve numbers are estimated, and three of them are the basin or composite curve numbers (CN-II and CN-III) evaluated from hydrologic soil cover complex, the observed curve numbers computed from rainfal1-runoff observations and the basin median curve numbers as a median of the observed curve numbers. Based on the observed runoff, CM-II underestimates the effective rainfall meanwhile CN-III overestimates. Hence, for the improvement in estimating effective rainfall, a modulating curve number may be defined as a value in between CN-II and CN-III. Basin median curve numbers produces the closest result to the observed runoff and therefore it can be adopted as a representative curve number for gaged basin.

  • PDF

RUNOFF ANALYSIS BY SCS CURVE NUMBER METHOD

  • Yoon, Tae-Hoon
    • Korean Journal of Hydrosciences
    • /
    • v.4
    • /
    • pp.21-32
    • /
    • 1993
  • The estimates of both runoff depth and peak runoff by the basin runoff curve numbers, which are CN-II for antecedent moisture condition- II and CN -III for antecedent moisture condition-III, obtained from hydrological soil-cover complexes of 26 watersheds are investigated by making use of the observed curve numbers, which are median curve number and optimum curve number, computed from 250 rainfall-runoff records. For gaged basins the median curve numbers are recommended for the estimation of both runoff depth and peak runoff. For ungaged basin, found is that for the estimate of runoff depth CN-II is adequate and for peak runoff CN-II is suitable. Also investigated is the variation of the runoff curves during storms. By the variable runoff curve numbers, the prediction of runoff depth and peak runoff can be improved slightly.

  • PDF

Redetermination of curve number using genetic algorithm and CN aligner equation (유전자 알고리즘과 CN Aligner 공식을 이용한 유출곡선지수 재산정)

  • Park, Dong-Hyeok;Kang, Doo-Sun;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.5
    • /
    • pp.373-380
    • /
    • 2016
  • The NRCS-CN (Natural Resources Conservation Service-Curve Number) method has been practically applied for estimating the effective precipitation. However, there are no criteria which reflect the geographic characteristics of Korea having more than 70% of mountainous and rice paddy areas, leading to significant errors in runoff calculation. Thus, it is required to estimate the runoff curve number considered Korea land use classification, however there are practical difficulties to conduct the accurate research and experimentation. In this study, after selecting target areas (urban, agriculture, forest), we performed the runoff analysis to redetermine CN values for the selected basins. To do this, curve numbers for soil type A were estimated using genetic algorithm, and then curve numbers for soil type (B, C, D) were estimated using CN aligner equation. Comparing the initial curve numbers with the estimated curve numbers, it was observed that the slightly differences at Chunwang(0), Choonyang(-1), Janggi(-3). Through the above process, this study proposed new curve numbers to reflect observed rainfall-runoff.

Runoff Curve Number Estimation for Cover and Treatment Classification of Satellite Image(I): - CN Estimation - (위성영상 피복분류에 대한 CN값 산정(I): - CN값 산정 -)

  • Bae, Deg-Hyo;Lee, Byong-Ju;Jeong, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.985-997
    • /
    • 2003
  • The objective of this study is to propose Runoff Curve Numbers(CNs) for land cover and treatment classification of satellite image. For this purpose, land cover classifications by using satellite image in addition to the exiting SCS's land cover and treatment classifications studies and land cover classifications suggested by Ministry of Environment are selected to provide CNs depending on the classifications. CNs estimation method is statistical approach that is suggested by Hjelmfelt(1991). Result of this study may contribute to use efficiently for the estimation of CNs in using satellite image.

Estimating Runoff Curve Numbers for Paddy Fields (논의 유출곡선번호 추정)

  • Im, Sang-Jun;Park, Seung-U
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.379-387
    • /
    • 1997
  • This study involves field monitoring of hydrlolgic characteristics of paddy fields under common irrigation practice, statistical analysis of maximum retention storage, determination of CNs for antecedent moisture conditions. Curve numbers were estimated from observed rainfall-runoff relationship of two years data. The estimated CN for AMC-II was 78, and the CNs for AMC-I and II were 63 and 88, respectively. A water balance model was used to find the effect of ridge height changes and initial ponding depth in paddy fields on runoff. The probability distribution of initial ponding depth was also investigated. The initial ponding depth follows normal probability distribution. Initial ponding depth corresponding 10%, 50%, and 90% probability were considered to be equivalent to AMC-I, AMC-II, and AMC-III, respectively. Long-term runoff data from paddy fields were simulated by a water balance model using recorded climate data, ridge height and estimated initial ponding depth derived from probability distribution. The estimated CNs using simulated runoff were 70, 79, and 89 for CN-I, CN-II, and CN-III, respectively.

  • PDF

SCS Curve Number and temporal Variation of Rainfall (강우의 시간분포를 고려한 CN값 산정)

  • Cho, Hong-Je;Lee, Tae-Young
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.183-193
    • /
    • 2003
  • A relation between the temporal variation of rainfall and direct runoff was characterized using temporal indexes of rainfall(1st, 2nd, 3rd, and 4th moment). Curve Number has a relation with 1st and 2nd moment for AMCIII condition when the rainfall duration is relative (10th quantile). Also peak runoff ratio(QP/Q) has a relation with 1st and End moment for AMCIII condition as well as 3rd and 4th moment for AMC I condition. Considering all durations of rainfall, alternatively, Curve Number has a relation with 1st and 2nd moment for AMCIIIcondition besides every moments for AMC I condition. But peak runoff ratio(QP/Q) has few relations excepting 3rd and 4th moment for AMC I condition. As a results, temporal indexes of rainfall are useful to determine curve numbers regarding the temporal variation of rainfall.

Regionalization of CN values at Imha Watershed with SCE-UA (최적화 기법을 이용한 임하호유역 대표 CN값 추정)

  • Jeon, Ji-Hong;Kim, Tae-Dong;Choi, Dong-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.5
    • /
    • pp.9-16
    • /
    • 2011
  • Curve Numbers (CN) for the combination of land use and hydrologic soil group were regionalized at Imha Watershed using Long-term Hydrologic Impact Assessment (L-THIA) coupled with SCE-UA. The L-THIA was calibrated during 1991-2000 and validated during 2001-2007 using monthly observed direct runoff data. The Nash-Sutcliffe (NS) coefficients for calibration and validation were 0.91 and 0.93, respectively, and showed high model efficiency. Based on the criteria of model calibration, both calibration and validation represented 'very good' fit with observe data. The spatial distribution of direct surface runoff by L-THIA represented runoff from Thiessen pologen at Subi and Sukbo rain gage station much higher than other area due to the combination of poor hydrologic condition (hydrologic soil C and D group) and locality heavy rainfall. As a results of hydrologic condition and treatment for land use type based on calibrated CNs, forest is recommended to be hydrologically modelled dived into deciduous, coniferous, and mixed forest due to the hydrological difference. The CNs for forest and upland showed the poor hydrologic condition. The steep slope of forest and alpine agricultural field make high runoff rate which is the poor hydrologic condition because CN method can not consider field slope. L-THIA linded with SCE-UA could generated a regionalized CNs for land use type with minimized time and effort, and maximized model's accuracy.

Runoff Curve Number Estimation for Cover and Treatment Classification of Satellite Image(II): - Application and Verification (위성영상 피복분류에 대한 CN값 산정(II): - 적용 및 검정 -)

  • Lee, Byong-Ju;Bae, Deg-Hyo;Jeong, Chang-Sam
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.999-1012
    • /
    • 2003
  • The objective of this study is to test the applicability of CN values suggested using land cover and treatment classification of satellite image. Applicability test is based on the comparison of observed effective rainfall and computed one. The 3 case study areas, where are the upstream of Gyeongan stage station, the upstream of Baekokpo stage station Pyungchang River basin, and the upstream of Koesan Dam, are selected to test the proposed CN values and the hydrologic and meteorologic data, Landsat-7 ETM of 2000, soil map of 1:50,000 are collected for the selected areas. The results show that the computed CN values for three study cases are 71, 63, 66, respectively, and the errors between observed and computed effective rainfall are within about 30%. It can be concluded that the proposed CN values from this study for land cover and treatment classification of satellite image not only provides more accurate results for the computation of effective rainfall, but also suggest the objective CN values and effective rainfall.

Application of GSIS Technique for Direct Runoff Estimation (직접유출량 산정을 위한 GSIS 기법의 적용)

  • 신계종;김연준
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.199-209
    • /
    • 2000
  • Recently, GSIS is introduced in the various fields. Especially in hydrology, the useful of GSIS is emphasized to analyze parameters, which are necessary for the analysis of watershed. In this paper, to estimate the direct runoff volume, I used the SCS-CN method which was useful to calculate direct runoff volume in a watershed that was not observed. But because SCS-CN method must treat a great number of spatial data, if we use the GSIS, we can treat numbers of the data easily. GSIS databases is constructed by using the data which is related to soil type, landuse. And runoff curve number was estimated by means of these databases in the study area. Also, the area of covered each subbasin rainfall gauge station was estimated by thiessen polygon network technique. The direct runoff volume was calculated by these subbasin area to the rainfall gauge station. I knew, from this study, that using GSIS, I can calculate parameters needed in direct runoff volume analysis, fast, exactly.

  • PDF