• 제목/요약/키워드: Running shoes

검색결과 57건 처리시간 0.022초

The Effects of Running Shoes' Midsole Properties on Impact and Lower Extremity Joint's Dynamic Stability

  • Ryu, Sihyun;Gil, Ho-Jong
    • 한국운동역학회지
    • /
    • 제31권4호
    • /
    • pp.290-296
    • /
    • 2021
  • Objective: The purpose of this research is to examine the effects of three types of different running shoes with different properties on impact variables (PVRGF and VLR) and the lower extremity joint's dynamic stability variables (LyEs of DPA, IEA, FEA, DPAV, IEAV, and FEAV) during running. Method: The participants in this research were 12 males (Age: 22.0 ± 3.3 years, Height: 177.2 ± 4.1 cm, Weight: 74.3 ± 9.6 kg). One type of N company's running shoes and two types (FA, FB) of F company's running shoes were used. As for the properties of the running shoes, thickness (mm), dwell time (ms), peak acceleration (m/s2), and energy return (%) were measured. The motions running at 3.5 m/s on a treadmill (Instrumented treadmill, Bertec, USA) wearing each type of running shoes were analyzed. Results: Although the VLR of the thick running shoes (FB) was smaller than that of the other running shoes (N, FA), the LyEs of PVGRF and DPA were larger (p<.05). Even though the running shoes' dwell time (i.e., impact absorption time) and peak acceleration showed a positive correlation with the LyEs of DPAV, IEAV, and FEAV, the energy return showed a negative correlation (p<.05). Conclusion: Our results indicated that the running shoes with excellent impact absorption function are predicted to be suitable for running beginners who need to reduce the burden of the lower extremity joint during running. The running shoes with excellent energy return are expected to be suitable for mid-and long-distance running elite athletes or marathoners to whom stability and consistency are essential during running.

기능성 스프링신발과 일반운동화의 운동역학적 비교분석 (Kinetic Differences between Normal-design Running Shoes and Spring-loaded Running Shoes)

  • 이종훈
    • 한국운동역학회지
    • /
    • 제19권3호
    • /
    • pp.581-592
    • /
    • 2009
  • 본 연구는 일반운동화와 스프링신발의 운동역학적 분석을 통해 일상적인 보행에서 스프링신발이 갖는 특성을 알아보기 위해 실시하였다. 이를 위해 정상족궁인 30-40대 여성 12명을 대상으로 2종류의 실험용 신발(스프링신발)과 비교용 신발(일반운동화)을 착용시킨 후 1.7m/s의 보행속도에서 지면반력기와 EMG, 적외선 카메라를 이용한 운동 역학적 분석을 실시하였다. 분석 결과 지면반력 분석에서는 제 1정점과 제 2정점에서 실험용신발이 일반운동화에 비해 큰 전후성분값을 나타냈다. 근전도분석에서는 대퇴직근의 활동이 스프링 신발을 신었을 때 증가하는 것으로 나타났다. 후족각에서 스프링 신발이 착지 시와 제1정점간에 일반화보다 크며 발목 관절을 중심으로 내측으로 회전하는 회내 운동을 적절하게 제어 하면서 이지 시에 후족 각의 감소에 영향을 미치는 것으로 나타났다. 따라서 스프링신발은 일반 신발에 비해 보행 시 무릎 신전근들의 근력 향상에는 도움을 줄 수 있을 것으로 판단된다.

달리기시 쿠션형과 모션컨트롤형 런닝화 착용에 따른 생체역학적 비교 (A Biomechanical Comparison of Cushioning and Motion Control Shoes During Running)

  • 이기광
    • 한국운동역학회지
    • /
    • 제15권3호
    • /
    • pp.1-7
    • /
    • 2005
  • Excessive pronation and impact force during running are related to various running injuries. To prevent these injuries, three type of running shoes are used, such as cushioning, stability, and motion control. Although there were may studies about the effect of midsole hardness on impact force, no study to investigate biomechanical effect of motion control running shoes. The purpose of this study was to determine biomechanical difference between cushioning and motion control shoes during treadmill running. Specifically, plantar and rearfoot motion, impact force and loading rate, and insole pressure distribution were quantified and compared. Twenty male healthy runners experienced at treadmill running participated in this study. When they ran on treadmill at 3.83 m/s. Kinematic data were collected using a Motion Analysis eight video camera system at 240 Hz. Impact force and pressure distribution data under the heel of right foot were collected with a Pedar pressure insole system with 26 sensors at 360 Hz. Mean value of ten consecutive steps was calculated for kinematics and kinetics. A dependent paired t-test was used to compare the running shoes effect (p=0.05). For most kinematics, motion control running shoes reduced the range of rearfoot motion compared to cushioning shoes. Runners wearing motion control shoe showed less eversion angle during standing less inversion angle at heel strike, and slower eversion velocity. For kinetics, cushioning shoes has the effect to reduce impact on foot obviously. Runners wearing cushioning shoes showed less impact force and loading rate, and less peak insole pressure. For both shoes, there was greater load on the medial part of heel compared to lateral part. For pressure distribution, runners with cushioning shoes showed lower, especially on the medial heel.

달리기 시 인솔의 굽힘 강성 증가에 따른 발목과 중족골 관절의 운동학적 변인 및 관절 협응에 미치는 영향 (The Effects on Kinematics and Joint Coordination of Ankle and MTP Joint as Bending Stiffness Increase of Shoes during Running)

  • Kim, Sungmin;Moon, Jeheon
    • 한국운동역학회지
    • /
    • 제31권3호
    • /
    • pp.205-213
    • /
    • 2021
  • Objective: The aim of this study was to analyze body stability Joint coordination pattern though as bending stiffness of shoes during stance phase of running. Method: 47 male subjects (Age: 26.33 ± 2.11 years, Height: 177.32 ± 4.31 cm, Weight: 65.8 ± 3.87 kg) participated in this study. All subjects tested wearing the same type of running shoes by classifying bending stiffness (A shoes: 3.2~4.1 N, B shoes: 9.25~10.53 N, C shoes: 20.22~21.59 N). They ran 10 m at 3.3 m/s (SD ±3%) speed, and the speed was monitored by installing a speedometer at 3 m intervals between force plate, and the measured data were analyzed five times. During running, ankle joint, MTP joint, coupling angle, inclination angle (anterior-posterior, medial-lateral) was collected and analyzed. Vector coding methods were used to calculate vector angle of 2 joint couples during running: MTP-Ankle joint frontal plane. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was Bonferroni. Results: Results indicated that there was an interaction between three shoes and phases for MTP (Metatarsalphalangeal) joint angle (p = .045), the phases in the three shoes showed difference with heel strike~impact peak (p1) (p = .000), impact peak~active peak (p2) (p = .002), from active peak to half the distance to take-off until take-off (p4) (p = .032) except for active peak~from active peak to half the distance to take-off (p3) (p = .155). ML IA (medial-lateral inclination angle) for C shoes was increased than other shoes. The coupling angle of ankle angle and MTP joint showed that there was significantly difference of p2 (p = .005), p4 (p = .045), and the characteristics of C shoes were that single-joint pattern (ankle-phase, MTP-phase) was shown in each phase. Conclusion: In conclusion, by wearing high bending stiffness shoes, their body instability was increased during running.

마라톤화 착용 시 후족제어에 미치는 영향 (The Influence of Rearfoot Motion Control through Marathon Shoes On and Off)

  • 김용재;장성일
    • 한국운동역학회지
    • /
    • 제15권2호
    • /
    • pp.69-81
    • /
    • 2005
  • In this study using two-dimensional system of the analysis of image, when normal males in their twenties who have normal foot and step with heel first are walking and running, they who are wearing running shoes or barefoot are testing and comparing the exchange factors of heel control. There are following results of this test by verifying them with T-Test. 1) When they are running, there are two big different gap which is $6.05^{\circ}$ between barefoot and wearing the running shoes. The former is $174.79^{\circ}{\pm}6.31$ and the latter is $180.84^{\circ}{\pm}4.69$. But it is not statistically significant. The angle of first step with heel is $100.42^{\circ}{\pm}3.95$ with barefoot and $93.97^{\circ}{\pm}094$ with wearing the running shoes. In this case, it is statistically significant(p<.01) 2) When they are running, the angle of the Achilles' tendon has different gap which is $5.24^{\circ}$ between barefoot and wearing the running shoes. The former is $179.70^{\circ}{\pm}4.23$ and the latter is $184.94^{\circ}{\pm}4.09$. It is not statistically significant. The angle of minimal step with heel is $96.30^{\circ}{\pm}3.07$ with barefoot and $90.84^{\circ}{\pm}0.44$ with wearing the running shoes. In this case, it is statistically significant(p<.01). 3) In the angle of the Achilles' tendon and the angle of first step with heel, when they are walking, the angle of the Achilles' tendon has different gap which is $1.81^{\circ}$ between barefoot and wearing the running shoes. The former is $6.39^{\circ}{\pm}0.83$ and the latter is $8.20^{\circ}{\pm}1.85$. It is not statistically significant. The angle of first step with heel is $2.32^{\circ}{\pm}0.51$ with barefoot and $3.22^{\circ}{\pm}1.44$ with wearing the running shoes. It is not statistically significant. 4) In the angle of the take-off of Achilles' tendon, when they are walking, the angle of the take-off of Achilles' tendon has different gap which is $3.88^{\circ}$ between barefoot and wearing the running shoes. The former is $177.62^{\circ}{\pm}8.78$ and the latter is $173.74^{\circ}{\pm}16.31$. It is statistically significant(p<.05). Therefore, they are running, the angle of the take-off of Achilles' tendon is $178.37^{\circ}{\pm}19.28$ with barefoot and $171.26^{\circ}{\pm}12.18$ with wearing the running shoes. It is statistically significant(p<.05).

고탄성 런닝화가 생체역학적 요소에 미치는 영향 (Effect of High Elastic Running Shoes on Biomechanical Factors)

  • Lee, Jungho
    • 한국운동역학회지
    • /
    • 제30권4호
    • /
    • pp.285-291
    • /
    • 2020
  • Objective: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Method: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Results: In vastus lateralis muscle Activation, Type 55 were significantly higher for Type 50 and X (p=0.019, p=0.045). In Gluteus Maximus muscle activation, Type 55 was significantly lower for type 50 (p=0.005). In loading late, Type 55 and X were significantly higher for type 45 (p=0.008, p=0.006). Conclusion: The components of a shoe are very complex, and there can be many differences in manufacturing as well. Although some differences can be found in the biomechanical variables of the high elastic midsole, it is difficult to interpret the performance enhancement and injury prevention.

보행시 신발, 속도, 그리고 경사도에 따른 정규 저크의 차이 (The Differences of the Normalized Jerk According to Shoes, Velocity and Slope During Walking)

  • 한영민;최진승;김형식;임영태;이정한;탁계래;이경옥;박승범
    • 한국운동역학회지
    • /
    • 제16권2호
    • /
    • pp.1-8
    • /
    • 2006
  • The purpose of this study was to evaluate normalized jerk according to shoes, slope, and velocity during walking. Eleven different test subjects used three different types of shoes (running shoes, mountain climbing boots, and elevated forefoot walking shoes) at various walking speeds(1.19, 1.25, 1.33, 1.56, 1.78, 1.9, 2, 2.11, 2.33m/sec) and gradients(0, 3, 6, 10 degrees) on a treadmill. Since there were concerns about using the elevated forefoot shoes on an incline, these shoes were not used on a gradient. Motion Analysis (Motion Analysis Corp. Santa Rosa, CA USA) was conducted with four Falcon high speed digital motion capture cameras. Utilizing the maximum smoothness theory, it was hypothesized that there would be differences in jerk according to shoe type, velocity, and slope. Furthermore, it was assumed that running shoes would have the lowest values for normalized jerk because subjects were most accustomed to wearing these shoes. The results demonstrated that elevated forefoot walking shoes had lowest value for normalized jerk at heel. In contrast, elevated forefoot walking shoes had greater normalized jerk at the center of mass at most walking speeds. For most gradients and walking speeds, hiking boots had smaller medio-lateral directional normalized jerk at ankle than running shoes. These results alluded to an inverse ratio for jerk at the heel and at the COM for all types of shoes. Furthermore, as velocity increased, medio-lateral jerk was reduced for all gradients in both hiking boots and running shoes. Due to the fragility of the ankle joint, elevated forefoot walking shoes could be recommended for walking on flat surfaces because they minimize instability at the heel. Although the elevated forefoot walking shoes have the highest levels of jerk at the COM, the structure of the pelvis and spine allows for greater compensatory movement than the ankle. This movement at the COM might even have a beneficial effect of activating the muscles in the back and abdomen more than other shoes. On inclines hiking boots would be recommended over running shoes because hiking boots demonstrated more medio-lateral stability on a gradient than running shoes. These results also demonstrate the usefulness of normalized jerk theory in analyzing the relationship between the body and shoes, walking velocity, and movement up a slope.

달리기 시 운동화 중저의 경도가 신발굴곡각도의 크기에 미치는 영향 (The Influence of Midsole Hardness of Running Shoes on Shoes Flex Angle during Running)

  • 목승한;곽창수;권오복
    • 한국운동역학회지
    • /
    • 제14권2호
    • /
    • pp.85-103
    • /
    • 2004
  • This study was conducted to determine what effects would the midsole hardness of running shoes have on shoe flex angle and maximum propulsive force. Furthermore, the relationship between the shoes flex angle and maximum propulsive force was elucidated in order to provide basic data for developing running shoes to improve sports performances and prevent injuries. The subjects employed in the study were 10 college students majoring in physical education who did not have lower limbs injuries for the last one year and whose running pattern was rearfoot strike pattern of normal foot. The shoes used in this study had 3different hardness, shore A 40(soft), 50(medium) and 60(hard). The subjects were asked to run at a speed of $4{\pm}0.08m/sec$, and their movements were videotaped with 2 S-VHS video-cameras and measured with a force platform. And the following results were obtained after analyzing and comparing the variables. 1. Although the minimum angle of shoes flex angle was estimated to appear at SFA4, it appeared at SFA2 except in those shoes with the hardness of 40. 2. The minimum angle of shoes flex angle was $145.1^{\circ}$ with barefoot. Among the shoes with different hardness, it was the smallest when the hardness was 50 at $149.9^{\circ}$. The time to the minimum angle was 70.7% of the total ground contact time. 3. Maximum propulsive force according to midsole hardness was the largest when the hardness was 50 at $1913.9{\pm}184.3N$. There was a low correlation between maximum propulsive force and shoes flex angle.

The Effects of Shoe Type on Ground Reaction Force

  • Yi, Kyung-Ok
    • 한국운동역학회지
    • /
    • 제21권1호
    • /
    • pp.9-16
    • /
    • 2011
  • The purpose of this study is to analyze the effects of both various shoe types and bare feet on ground reaction force while walking. Ten first-year female university students were selected. A force platform(Kistler, Germany) was used to measure ground reaction force. Six types of shoe were tested: flip flops, canvas shoes, running shoes, elevated forefoot walking shoes, elevated midfoot walking shoes, and five-toed shoes. The control group was barefooted. Only vertical passive/active ground reaction force variables were analyzed. The statistical analysis was carried out using the SAS 9.1.2 package, specifically ANOVA, and Tukey for the post hoc. The five-toed shoe had the highest maximum passive force value; while the running shoe had the lowest. The first active loading rate for running shoes was the highest; meanwhile, bare feet, the five-toed shoe, and the elevated fore foot walking shoe was the lowest. Although barefoot movement or movement in five toed shoes increases impact, it also allows for full movement of the foot. This in turn allows the foot arch to work properly, fully flexing along three arches(transverse, lateral, medial), facilitating braking force and initiating forward movement as the tendons, ligaments, and muscles of the arch flex back into shape. In contrast movement in padded shoes have a tendency to pound their feet into the ground. This pounding action can result in greater foot instability, which would account for the higher loading rates for the first active peak for padded shoes.

인솔 차이에 따른 런닝화의 운동역학적 비교 (The Biomechanical Comparison of Running Shoes According to the Difference of Insole)

  • 진영완;신성훈
    • 한국운동역학회지
    • /
    • 제17권2호
    • /
    • pp.51-59
    • /
    • 2007
  • These studies show that I applied to functional insole (a specific A company) for minimizing shocks and sprain people's ankle arising from running. How to an effect on human body which studied a kinematics and kinetics from 10 college students during experiments. This study imposes several conditions by barefoot, normal running shoes and put functional insole shoes ran under average $2.0{\pm}0.24\;m$/sec by motion analysis and ground reaction force that used to specific A company. First of all, motion analysis was caused by achilles tendon angle, angle of the lower leg, angle of the knee, initial sole angle and barefoot angle. The result of comparative analysis can be summarized as below. Motion analysis showed that statically approximates other results from achilles tendon angle (p<.01), initial ankle angle(p<.05), initial sole angle(p<.001) and barefoot angle(p<.001). Ground reaction force also showed that statically approximates other results from impact peak timing (p<.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). Above experiment values known that there was statically difference between Motion analysis and Ground reaction force under absorbing of the functional insole shoes which was not have an effect on our body for kinetics and kinematics.