• 제목/요약/키워드: Running loss

검색결과 147건 처리시간 0.019초

풀형 고속증식로의 과도 현상을 모사하는 Fast Running System Code개발 (Fast Running System Code Development to Simulate Transient Behavior of Pool-Type LMFBRs)

  • Youg Bum Lee;Soon Heung Chang;Mann Cho
    • Nuclear Engineering and Technology
    • /
    • 제17권1호
    • /
    • pp.16-24
    • /
    • 1985
  • 풀형 고속증식로에서의 과도 현상을 모사할 수 있는 전산 모델이 개발되었다. 이 전산 모델 SIM-FARP는 어떠한 펌프로의 전원 상실사고나 완전한 강제냉각 상실사고, 그리고 자연순환 과정 등을 모사할 수 있는 Fast Running Computer Code이다. 이에 따라 8개의 지배방정식이 유도되었으며, 이8개의 미분 방정식을 풀기 위해 Runge-Kutta의 수치해석방법이 사용되었다. 개발된 전산 프로그램은 두 가지 예제에 적용되었는데 이는 Super-Phenix-I에서의 펌프에의 전원상실사고 및 원자로가 정지되지 않는 상태에서의 외부전원 상실사고이다.

  • PDF

저속 및 고속주행에서 안정영역을 갖는 3 Segment Leg 설계 연구 (Design Study of 3 Segment Leg with Stable Region at low and high Speed Running)

  • 권오석;이동하
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.230-236
    • /
    • 2011
  • In previous researches, the self-stability was studied for the spring-mass model and the two segment leg model. In these researches, it was presented that the spring-mass model has the self-stable region at relatively high speed running and the two segment leg model has the self-stable region at relatively low speed running. If the model was run in the self-stable region, the cost of transport is zero ideally. That is, actually, only the energy loss is needed to compensate for running. This means that the energy efficiency is high, running in the self-stable region. We want to have high energy efficiency at low and high speed running. So, in this paper, we propose the design direction of the three segment leg having the self-stable region at low and high speed running. And we prove the self-stable region of the three segment leg designed by the proposed design direction.

고탄성 런닝화가 생체역학적 요소에 미치는 영향 (Effect of High Elastic Running Shoes on Biomechanical Factors)

  • Lee, Jungho
    • 한국운동역학회지
    • /
    • 제30권4호
    • /
    • pp.285-291
    • /
    • 2020
  • Objective: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Method: Shoes midsole are crucial for reducing impact forces on the lower extremity when someone is running. Previous studies report that the cushioning of running shoes make it possible to use less muscular energies. However, the well cushioned shoes result in energy loss as the shoe midsole is compressed. Cushioning reduces the load on the body, it also results in the use of more muscle energy to create propulsion force. The purpose of this study was to investigate the effect of the difference of shoe hardness & resilience on the running. Results: In vastus lateralis muscle Activation, Type 55 were significantly higher for Type 50 and X (p=0.019, p=0.045). In Gluteus Maximus muscle activation, Type 55 was significantly lower for type 50 (p=0.005). In loading late, Type 55 and X were significantly higher for type 45 (p=0.008, p=0.006). Conclusion: The components of a shoe are very complex, and there can be many differences in manufacturing as well. Although some differences can be found in the biomechanical variables of the high elastic midsole, it is difficult to interpret the performance enhancement and injury prevention.

국내 휘발유 자동차의 증발가스 배출 특성에 관한 연구 (A Study on the Evaporative Emission Characteristics of Korean Gasoline Vehicles)

  • 박준홍;박영표;임윤성;이종태;김정수;최광호
    • 한국자동차공학회논문집
    • /
    • 제19권4호
    • /
    • pp.121-129
    • /
    • 2011
  • Hydrocarbons which are the main sources of VOCs from motor vehicles are emitted not only from the engine exhaust gas but also from evaporation of the fuel in storage and supplying systems. Evaporative emissions from gasoline fuel systems could be classified by diurnal, hotsoak and running loss. Diurnal loss test procedures are different as countries. Korea introduced new evaporative regulation in 2009 with 24hour VT-shed test procedure and relaxed emission standards. The estimations on different test procedures in this study show that the new Korean regulation get a little more severe than before and the 2 day diurnal loss test of U.S. is the most severe. So the test procedures as well as the stronger standards should be considered in the next evaporative emission regulation to reduce VOCs from motor vehicles. The important parameters to affect evaporative emissions are air and fuel temperature and fuel vapor pressure. Diurnal loss increases exponentially as rising air temperature and vapor pressure. The effects of vapor pressure on running loss are different as the capacities of canisters. Tests with simulating real temperature and driving conditions show that hydrocarbons in evaporative emissions could be more than those in exhaust gas in summer season because of the higher air temperature.

도시철도시스템의 에너지 저장방식에 관한 연구 (A Study on the Energy Storage Mass of Urban Transit System)

  • 이한민;김길동;이장무
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.831-835
    • /
    • 2007
  • Energy Saving is one of worldwide emerging issues. These days, applicable techniques of railway vehicle's regenerative energy are investigating in worldwide railway industries. Energy saving methods are "Downsizing energy loss" and "Re-utilizing kinetic energy". Useful plans for Downsizing energy loss are "adjusting operation table" and "optimizing running pattern". Furthermore, regenerative energy that is produced with decreasing speed and stoping, is an important element with reducing vehicle's weight, raising equipment 's efficiency, decreasing running resistance and re-configurating running pattern. Sustainable energy storage mass : Flywheel, EDLC(electrical double layer capacitor) and Secondary battery are applied in overseas, but these cases are not reported within the country. This research is reported for problems and economical validity that comes from by installing sustainable regenerative energy storage system in korean railway industries.

  • PDF

선단압력이 틸팅 패드 추력베어링의 운전특성에 미치는 영향 (Effects of inlet pressure build-up on the running characteristics of tilting pad thrust bearing)

  • 이경우;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.85-91
    • /
    • 1998
  • In this paper, an influence of inlet pressure on the running characteristics of tilting pad thrust bearing is studied by a numerical analysis. The inlet pressure is obtained from the extended Bernoulli equation including the loss coefficient which is varied with the operating conditions. The running characteristic parameters such as the minimum film thickness, the film pressure and the film thickness ratios are calculated for various runner speeds with constant load in particular two pivot positions. The results are shown that the inlet pressure has a large influence on the minimum film thickness and other running characteristic parameters.

  • PDF

Numerical Investigation on Permanent-Magnet Eddy Current Loss and Harmonic Iron Loss for PM Skewed IPMSM

  • Lim, Jin-Woo;Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.417-422
    • /
    • 2011
  • This paper presents the characteristics of PM eddy current loss and harmonic iron loss for PM step-skewed Interior Permanent Magnet Synchronous Motor (IPMSM) with concentrated windings and multi-layered PM under the running condition of maximum torque per ampere (MTPA) and flux-weakening control. In particular, PM eddy current loss and harmonic iron loss in IPMSM have been numerically computed with three-dimensional Finite Element Analysis (3D FEA), whereby IPMSM with concentrated windings and multi-layered PM has been designed to identify the optimized skew angle contributing to the reduced PM eddy current loss and torque ripples, while maintaining the required average torque. Furthermore, numerical investigation on PM eddy current loss and iron loss at MTPA and flux-weakening control has been carried-out in terms of PM step-skew.

엔진 마찰 특성에 미치는 부수적 인자의 영향 (The Effects of Additional Factors on the Engine Friction Characteristics)

  • 조명례;김중수;오대윤;한동철
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.2159-2164
    • /
    • 2002
  • This paper reports on the effects of additional factors on the engine friction characteristics. The total friction loss of engine is composed of pumping and mechanical friction loss. The pumping loss was calculated from the cylinder pressure, and the mechanical friction loss was measured by strip-down method under the motoring condition. The various parameters were tested. The engine friction loss was much affected by oil and coolant temperature. The low viscosity oil was very effective to reduce the friction loss, and friction modifier was very useful to reduce the friction loss at lower engine speed. The engine friction loss was varied with engine running time because of surface roughness decreasing and oil degradation. To prevent oil-churning effect, it was very important to maintain the proper oil level. The presented results will be very useful to understand friction characteristics of engine.

피봇식 패드 추력베어링의 성능 비교 (Comparison of the Performance of Pivoted Pad Thrust Bearings)

  • 김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.337-342
    • /
    • 1998
  • In this paper the lubrication performances of line pivoted pad thrust bearing and point pivoted pad thrust bearing are studied by a numerical analysis. The running characteristic parameters such as nondimensional load carrying capacity nondimensional friciton power loss nondimensional flow rate and film thickness ratios are calculated for various circumferential pivot positions. The results provide a usdful data for the selection of pivot position in a pivoted and thrust bearing.

  • PDF

지하철 전력계통에서의 사고복구 시스템 알고리즘 개발 (Fault Restoration Algorithm for Subway Power System)

  • 김지웅;류헌수;이종기;문영현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.308-310
    • /
    • 2001
  • This paper is to introduce a more effective and flexible restoration algorithm composed to the fault preventing and restoring system now in use. This was possible by considering the changes that can occur by the proper or the improper run of the Feeder, which the power system restoration method now using didn't consider. The new algorithm uses the method minimizing the loss with respect to the load changes occuring when the power system is restored, rather than just simply following the SOP that is only composed of a single Feeder On/off combination. This can present the more effective power system running method for the safer subway running and passenger transport, by giving the system operator the chance to choose between the SOP and the minimum loss method.

  • PDF