• Title/Summary/Keyword: Runner Blade Design

Search Result 23, Processing Time 0.026 seconds

Physics-based Surrogate Optimization of Francis Turbine Runner Blades, Using Mesh Adaptive Direct Search and Evolutionary Algorithms

  • Bahrami, Salman;Tribes, Christophe;von Fellenberg, Sven;Vu, Thi C.;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.209-219
    • /
    • 2015
  • A robust multi-fidelity optimization methodology has been developed, focusing on efficiently handling industrial runner design of hydraulic Francis turbines. The computational task is split between low- and high-fidelity phases in order to properly balance the CFD cost and required accuracy in different design stages. In the low-fidelity phase, a physics-based surrogate optimization loop manages a large number of iterative optimization evaluations. Two derivative-free optimization methods use an inviscid flow solver as a physics-based surrogate to obtain the main characteristics of a good design in a relatively fast iterative process. The case study of a runner design for a low-head Francis turbine indicates advantages of integrating two derivative-free optimization algorithms with different local- and global search capabilities.

Design and Analysis of A Pico Propeller Hydro Turbine Applied in Fish Farms using CFD and Experimental Method

  • Tran, Bao Ngoc;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.373-380
    • /
    • 2019
  • In this paper, a pico hydro turbine employing low head circulation water at fish farms is designed and evaluated. Due to the advantages of simple structures, small head requirements, and low-cost investment, the constant thickness propeller turbine is considered as a feasible solution. The design process based on the free vortex method is presented in full detail, and a 4-blade runner is built using BladeGen. The turbine performance is analyzed both numerically and via experimental methods. Despite slight differences, the results show similar trends between CFD simulations and experiments carried out on factory test-rigs in a wide range of working conditions. At the design flow rate, the turbine achieves the best efficiency of 70 %, generating 3.5 kW power when rotating at 420 rpm. The internal flow field, as well as the turbine's behavior, are investigated through the distribution of blade streamlines, pressure, and velocity around the runner. Moreover, the pressure coefficient on the blade surface at 3 span positions is plotted while the head loss for each simulation domain is calculated and displayed by charts.

Runner Design and Internal Flow Characteristics Analysis for an Ns=200 Francis Hydro Turbine Model

  • Hwang, Yeong-Cheol;Chen, Zhenmu;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.8
    • /
    • pp.698-703
    • /
    • 2016
  • Francis hydro turbines have been most widely used throughout the world because of their wide range of head and flow rate applications. In most applications, they are used for high heads and flow rates. Currently, Korea is developing technology for Francis hydro turbine design and manufacture. In order to understand the internal details of Francis hydro turbines further, a new Francis turbine model runner is designed and model internal flow characteristics are investigated. The specific speed of the Francis hydro turbine model runner is $Ns=200m-kW-min^{-1}$. The runner blade is designed successfully according to the port area and one-dimensional loss analysis. The best efficiency point of the Francis hydro turbine model achieves 90% at the design condition. CFD analysis yields a hill chart of the Francis hydro turbine model for use in predicting performance.

Effect of Air Layer on the Performance of an Open Ducted Cross Flow Turbine

  • Wei, Qingsheng;Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Recently, the cross flow turbines attract more attention for their good performance over a large operating regime at off design point. This study employs a very low head cross flow turbine, which has open inlet duct and has barely been studied before, to investigate the performance of the cross flow turbine with air suction from the rear part of the runner. Unlike conventional cross flow turbines, a draft tube is attached to the outlet of runner to improve the turbine performance. Water level and pressure in the draft tube are monitored to investigate the influence of air suction. Torque at local blade passage of three parts of runner is examined in detail under the conditions of different air suction. Consequently, it is found that with proper air suction in the runner chamber, the water level in the draft tube gradually drops to Stage 2 of the runner and the efficiency of the turbine can be raised by 10%. Overall, the effect of air-layer on the performance of the turbine is considerable.

A New Concept of Hydraulic Design of Water Turbine Runners

  • Vesely, Jindrich;Pochyly, Frantisek;Obrovsky, Jiri;Mikulasek, Josef
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.383-391
    • /
    • 2009
  • Vibrations at different frequencies with a different intensity as well as a pressure pulsation with different parameters are two phenomena which can be observed at different water turbines. Due to the vibration and the pressure pulsation some restrictions of water turbine operation range are applied. Similar problems with the efficiency level in a wide water turbine operation range are the basic problems which are solved for ages. A theoretical and practical solution of the above mentioned problems is very much time and money consuming. The paper describes a new theoretical solution of the excitation and pressure pulsation decrease as well as extension of the operational range with high efficiency level. The new concept to decrease the vibrations and pressure pulsations is based on a heterogeneous runner blade geometry generation. The new concept of the runner geometry design was numerically tested at a low specific speed pump turbine, see Fig. 1, and basic points of the concept are presented in this paper.

Future Costume through Movies (영화속에 나타난 미래 의상)

  • 이상례
    • Journal of the Korean Society of Costume
    • /
    • v.48
    • /
    • pp.133-150
    • /
    • 1999
  • In future what kind of costume do we wear\ulcorner We can guess it is in advance through movie. Movie is a comnipresent medium and a mode of expression that reflect a distintive feature of the times like fashion. In many case costume design which belongs to a special era is based on the historic costumes but ostume design for future movie depends on the creativity of costume designer and director. Therefore it is interesting to research how costume designer get his/her design concept for future ccostume in movie how he/hse express his/her design concept through his/her costume and can we convince the design comes true practically in future. In this study I analyze the costume design of masterpieces among SF Film: (Metropolis/1926) (2001: A Space Odyssey/1968) (Star Wars/1977) (Blade Runner/1982) (The 5th Element/1977) Because this study is analyzed not through the original article but just through movie it has some limitation in exact materials or color.

  • PDF

Fully coupled FSI analysis of Francis turbines exposed to sediment erosion

  • Chitrakar, Sailesh;Cervantes, Michel;Thapa, Biraj Singh
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.3
    • /
    • pp.101-109
    • /
    • 2014
  • Sediment erosion is one of the key challenges in hydraulic turbines from a design and maintenance perspective in Himalayas. The present study focuses on choosing the best design in terms of blade angle distribution of a Francis turbine runner which has least erosion effect without influencing the efficiency and the structural integrity. A fully coupled Fluid-Structure-Interaction (FSI) analysis was performed through a multi-field solver, which showed that the maximum stress induced in the optimized design for better sediment handling, is less than that induced in the reference design. Some numerical validation techniques have been shown for both CFD and FSI analysis.

Output Optimization of Microhydro Kaplan Turbine by Double Regulating Runner and Guide Vane (러너와 가이드 베인의 연동을 통한 마이크로 카프란 수차의 출력 최적화)

  • Park, No-Hyun;Rhee, Young-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • Recently so much attention has been focused on renewable energy and, since its sources to exploit are already almost saturated in the country, the practical alternative to this situation could be a micro-turbine which uses the low head and low flow. From a point of view of local micro-turbine design capacity and manufacturing technology, the problems such as the accumulation of technical skills, the expansion of related industries, the national policy expansion and the turbine efficiency to improve are still vulnerable and it's true that there are also negative views about the economic feasibility, the technicity and the operation management of the micro-turbine. However, if the improvement can be done in technology of low-head double regulation micro-turbine to generate more outputs and the operation management can be reliably realized, the micro-turbine will be re-evaluated as an appliable source of renewable energy, even the output is small, and by a paradigm shift, it could realize a power generation as an economic and rational system.

Flow simulation and efficiency hill chart prediction for a Propeller turbine

  • Vu, Thi;Koller, Marcel;Gauthier, Maxime;Deschenes, Claire
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.243-254
    • /
    • 2011
  • In the present paper, we focus on the flow computation of a low head Propeller turbine at a wide range of design and off-design operating conditions. First, we will present the results on the efficiency hill chart prediction of the Propeller turbine and discuss the consequences of using non-homologous blade geometries for the CFD simulation. The flow characteristics of the entire turbine will be also investigated and compared with experimental data at different measurement planes. Two operating conditions are selected, the first one at the best efficiency point and the second one at part load condition. At the same time, for the same selected operating points, the numerical results for the entire turbine simulation will be compared with flow simulation with our standard stage calculation approach which includes only guide vane, runner and draft tube geometries.

Experimental and Numerical Investigations on Performances of Darriues-type Hydro Turbine with Inlet Nozzle

  • Matsushita, Daisuke;Tanaka, Kei;Watanabe, Satoshi;OKuma, Kusuo;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.4
    • /
    • pp.151-159
    • /
    • 2014
  • Low head hydropower is one of realistic renewable energies. The Darrieus-type hydro turbine with an inlet nozzle is available for such low head conditions because of its simple structure with easy maintenance. Experimental and numerical studies are carried out in order to examine the effects of gap distances between the runner pitch circle and two edges of inlet nozzle on turbine performances. By selecting narrower gaps of left and right edges, the performance could be improved. From the results of two dimensional numerical simulations, the relation between the performance and flow behaviors around the Darrieus blade are discussed to obtain the guideline of appropriate inlet nozzle design.