• Title/Summary/Keyword: Runner

Search Result 446, Processing Time 0.024 seconds

Infection of Daughter Plants by Fusarium oxysporum f. sp. fragariae through Runner Propagation of Strawberry (딸기 영양번식을 통한 Fusarium oxysporum f. sp. fragariae의 자묘 감염)

  • Nam, Myeong-Hyeon;Kang, Yang-Jae;Lee, In-Ha;Kim, Hong-Gi;Chun, Chang-Hoo
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.273-277
    • /
    • 2011
  • Fusarium oxysporum f. sp. fragariae (Fof), the causal agent of crown and root rot in strawberry, is the most serious soilborne disease of nursery plants in Korea. The possibility of infection by Fof through runner propagation from infected mother plants of strawberry cv. 'Kumhyang' was assessed in stolons and daughter plants hanging from raised beds. The number of daughter plants from an infected mother plant in plastic house and photosynthetic photon flux (PPF) system, 280 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was 2.7 and 3.8 plants after 58 days, respectively. However, healthy mother plants produced 6.5 and 8.4 daughter plants, respectively. The pathogen was detected in the uppermost portion of the stolon after 58 days, but was not detected further down the stolon. After 90 days, it was detected in all portions of the stolon between mother and $1^{st}$ daughter plant and in 60% of all $1^{st}$ daughter plants. The pathogen was not detected in the corresponding portions of the non-infected controls. These results show that infected mother plants can transmit Fof to their daughter plants without passing through the soil and $1^{st}$ daughter was used as mother plant in PPF system for propagating healthy plants.

Effect of Topping Time on Growth and Quality in Glycyrrhiza uralensis (적심시기가 감초의 생육 및 품질에 미치는 영향)

  • Nam, Sang-Young;Kim, In-Jae;Choi, Seong-Yel;Kim, Young-Ho;Song, In-Gyu;Lee, Guang-Jae;Park, Jae-Ho;Kim, Tae-Jung
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.189-194
    • /
    • 2011
  • This study was performed to evaluate the effect of pinching time on growth and quality of Glycyrrhiza uralensis soil cultured in Chungbuk Agricultural Research and Extension Service from 2008 to 2009. The treated pinching time were given as the June 30, July 30, August 30, and non-pinching (control). The amounts of pinching were 20% of stem length each plant. The obtained results from this study were summarized as follows; The plant height and number of branches were higher in control than pinching treatments. The stem and leaf weight were increase with early pinching. The plant height and stem diameter were not affected by pinching time. There was no regular trends in runner growth. We found that pinching was induced root growth, and early pinching was accelerated root growth. The root yield was increased in JUN and JUL pinching treatments as 11-30% in 2 years plants and 6-11% in 3 years plants compared to control as 238 kg/10a and 432 kg/10a, respectively.

Influence of Physico.Chemical Properties of Root Substrates on the Growth of Mother Plants and the Occurrence of Daughter Plants during the Propagation of 'Maehyang' Strawberry Using a Bag Culture System ('매향' 딸기 번식을 위한 플라스틱 백 재배시 상토 물리.화학성이 모주생육과 자묘 발생에 미치는 영향)

  • Choi, Jong-Myung;Park, Ji-Young;Ko, Kwan-Dal;Lee, Chi-Won W.
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.191-197
    • /
    • 2010
  • The objective of this research was to determine the influence of the physical and chemical properties of root substrates used during the production of 'Maehyang' strawberry propaguleson the growth of the mother plants and the rate of daughter plant formation. Plants were cultured in plastic bags containing six different formulations of root substrates composed of: a) 50% coir dust and 50% perlite (5:5 by volume, A), b) 60% coir dust and 40% perlite (6:4, B), c) 70% coir dust and 30% perlite (7:3, C), d) 70% coir dust and 30% coconut chip (7:3 D), e) 60% coir dust and 40% coconut chip (60:40, E), or f) 50% sphagnum peat and 50% vermiculite (50:50, F). All media formulations contained a moderate level of base fertilizers. Physical and chemical properties of each formulation were determined before plant establishment and after 120 days of stock plant culture and runner production. Total porosity (TP) and container capacity (CC) of all substrate formulations were higher than 85% and 55%, respectively, allowing a suitable range of air and water holding characteristics. Formulation F provided the highest TP and CC values among the all substrate modifications evaluated. Substrate formulations A, B, C and F had higher electrical conductivity (EC) and $NO_3{^-}$-N concentrations than formulations D and E, when determined before and after plant culture. Formulations A, B, C, and F, having higher EC readings, also performed better as root substrates thanthe formulations D and E in increasing fresh and dry weights of the runners as well as the production of daughter plants per plant. The 'Maehyang' strawberry plants grown in the formulation F had the highest tissue N content, followed by those grown in substrate B, A, C, or D for 120 days after transplanting. Formulation F also facilitated accumulation of higher tissue phosphorus (P) and copper (Cu) contents compared to other treatments. Results of this experiment suggest that the chemical properties, rather than physical properties, of root substrates had a major influence on the growth of mother plants and the occurrence of healthy daughter plants during the bag-culture phase of propagation.

Preparation and characterization of high density polyethylene/silane treated pulverized-phenol resin composites (고밀도 폴리에틸렌과 실란 처리된 분쇄페놀수지 복합재의 제조 및 특성)

  • Park, Jun-Seo;Han, Chang-Gue;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.27-33
    • /
    • 2016
  • Phenolic resin has excellent heat resistance and good mechanical properties as a thermosetting resin. However, its thermosetting characteristics cause it to produce a non-recyclable waste in the form of sprue and runner which is discarded and represents up to 15~20% of the overall products. Forty thousand tons of phenolic resin sprue and runner are disposed of (annually). The (annual) cost of such domestic waste disposal is calculated to be 20 billion won. In this study, discarded phenol resin scraps were pulverized and treated by silanes to improve their interfacial adhesion with HDPE. The sizes of the pulverized pulverulent bodies and fine particles were (100um~1000um) and (1~100um), respectively. The pulverized phenol resin was treated with 3-(methacryloyloxy) propyltrimethoxysilane and vinyltrimethoxy silane and the changes in its characteristics were evaluated. The thermal properties were evaluated by DSC and HDT. The mechanical properties were assessed by a notched Izod impact strength tester. When the silane treated phenol resin was added, the heat distortion temperature of HDPE increased from $77^{\circ}C$ to $96^{\circ}C$ and its crystallinity and crystallization temperature also increased. Finally, its impact strength and tensile strength increased by 20% and 50%, respectively, in comparison with the non-treated phenol resin.

Effects of Cultural Soil Texture on Growth and Quality of Glycyrrhiza uralensis Fischer (감초 생육 및 품질에 미치는 재배 토성의 영향)

  • Nam, Sang Young;Kim, In Jae;Choi, Seong Yel;Kim, Min Ja;Kim, Young Ho;Song, In Gyu;Lee, Guang Jae;Park, Jae Ho;Kim, Tae Jung
    • Journal of the Korean Society of International Agriculture
    • /
    • v.23 no.5
    • /
    • pp.531-536
    • /
    • 2011
  • This study was conducted to investigate the effects of cultural soil textures on growth and quality of Glycyrrhiza uralensis Fischer from 2009 to 2010. The obtained results from this study were summarized as follows; The growth of stem and leaf were superior to one year old G. uralensis, and surface runner and root growth tended to be better in 2 years old G. uralensis. The weight of stem and leaf were heavy in sandy loam, and plant height, branches, stem diameter in sandy clay loam were better than other soil texture. The growth characteristics, such as length, number and weight of surface runner, was better in order of sandy clay loam > sandy loam > loamy sand. The length of main and lateral root was longer in loamy sand soil than other treatments, and the diameter of main and lateral root was more thicker in sandy loam than others. The number of lateral root was higher in the sandy loam than other treatments. The yield of main and lateral root was in order of sandy loam > sandy clay loam > loamy sand soil. Marketable root yield of one year old and two year old G. uralensis were increased 57% and 71% in sandy loam compare to a loamy sand as 204 kg/10 a, respectively. The content of glycyrrhizinic acid was the hightest as 1.62% in sandy clay loam soil in one year old, and as 1.58% in sandy loam soil in two years old of G. uralensis, respectively.

Effect of Guide Nozzle Shape on the Performance Improvement of a Very Low Head Cross Flow Turbine

  • Chen, Zhenmu;Singh, Patrick Mark;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.19-26
    • /
    • 2014
  • The cross flow turbine attracts more and more attention for its relatively wide operating range and simple structure. In this study, a novel type of micro cross flow turbine is developed for application to a step in an irrigational channel. The head of the turbine is only H=4.3m and the turbine inlet channel is open ducted type, which has barely been studied. The efficiency of the turbine with inlet open duct channel is relatively low. Therefore, a guide nozzle on the turbine inlet is attached to improve the performance of the turbine. The guide nozzle shapes are investigated to find the best shape for the turbine. The guide nozzle plays an important role on directing flow at the runner entry, and it also decreases the negative torque loss by reducing the pressure difference in Region 1. There is 12.5% of efficiency improvement by attaching a well shaped guide nozzle on the turbine inlet.

Simulation model for Francis and Reversible Pump Turbines

  • Nielsen, Torbjorn K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.169-182
    • /
    • 2015
  • When simulating the dynamic behaviour of a hydro power plant, it is essential to have a good representation of the turbine behaviour. The pressure transients in the system occurs because the flow changes, which the turbine defines. The flow through the turbine is a function of the pressure, the speed of rotation and the wicket gate opening and is, most often described in a performance diagram or Hill diagram. In the Hill diagram, the efficiency is drawn like contour lines, hence the name. A turbines Hill diagram is obtained by performance tests on scaled model in a laboratory. However, system dynamic simulations have to be performed in the early stage of a project, before the turbine manufacturer has been chosen and the Hill diagram is known. Therefore one have to rely on diagrams for a turbine with similar speed number. The Hill diagram is drawn through measured points, so for using the diagram in a simulation program, one have to iterate in the diagram based on curve fitting of the measured points. This paper describes an alternative method. By means of the Euler turbine equation, it is possible to set up two differential equations which represents the turbine performance with good enough accuracy for the dynamic simulations. The only input is the turbine's main geometry, the runner blade in- and outlet angle and the guide vane angle at best efficiency point of operation (BEP). In the paper, simulated turbine characteristics for a high head Francis turbine, and for a reversible pump turbine are compared with laboratory measured characteristics.

Comparison of steady and unsteady simulation methodologies for predicting no-load speed in Francis turbines

  • Hosseinimanesh, Hossein;Devals, Christophe;Nennemann, Bernd;Guibault, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.155-168
    • /
    • 2015
  • No-load speed is an important performance factor for the safe operation of hydropower systems. In turbine design, the manufacturers must conduct several model tests to calculate the accurate value of no-load speed for the complete range of operating conditions, which are expensive and time-consuming. The present study presents steady and unsteady methods for calculating no-load speed of a Francis turbine. The steady simulations are implemented using a commercial flow solver and an iterative algorithm that relies on a smooth relation between turbine torque and speed factor. The unsteady method uses unsteady RANS simulations that have been integrated with a user subroutine to compute and return the value of runner speed, time step and friction torque. The main goal of this research is to evaluate and compare the two methods by calculating turbine dynamic parameters for three test cases consisting of high and medium head Francis turbines. Overall, the numerical results agreed well with experimental data. The unsteady method provided more accurate results in the opening angle range from 20 to 26 degrees. Nevertheless, the steady results showed more consistency than unsteady results for the three different test cases at different operating conditions.

Investigation into the Internal Flow Characteristics of a Pump-turbine Model

  • Singh, Patrick Mark;Chen, Chengcheng;Chen, Zhenmu;Choi, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.36-42
    • /
    • 2015
  • This is a study about one of the most widely used hydro machinery all over the world - pump-turbine. The system has an impeller which pumps water to an upper reservoir during the night and the same impeller acts as a runner for turbine mode during the day for providing stable electrical power to the grid. The internal flow analysis is investigated in this study to help understand how the water passes through the passage of the vanes and blades, providing the designer with useful information on the behavior of recirculation flows which could reduce the efficiency of the pump-turbine. The 100 kW pump-turbine model has H = 32 m, $Q=0.336m^3/s$ and $N=1200min^{-1}$. For this study there are 7 blades, 19 stay vanes and 20 guide vanes. From this study, it was observed that this pump-turbine design showed very good internal flow characteristics with no flow separation and no recirculation flows in normal operation mode.

A Study on Standardization of Performance Evaluation for Autonomous Cleaning Robot (자율청소로봇 성능평가 표준화에 관한 연구)

  • Ryu Jae-Chang;Hong Ju-Pyo;Rhim Sung-Soo;Lee Soon-Geul;Park Kwang-Ho
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1054-1059
    • /
    • 2005
  • To support the expansion of the autonomous robot market, the establishment of evaluation standards of the robot performance are essential. In this paper, to venture the standardization of the performance evaluation of the autonomous robot, the authors take the autonomous cleaning robot(ACR) as the initial stepping stone. Recently, the ACR has been being developed and marketed actively in many countries including Korea and it believes to be the fore-runner among various types of autonomous robot products. Standards of the performance evaluation for the ACR could be easily modified and applied to other autonomous robots. This paper formulates and suggests a group of standards for the performance evaluation based on a evaluation platform for the ACR. The newly developed performance evaluation platform has been designed to include all the important aspects of living environments in reality. In the platform the performance of the ACR is measured in terms of mobility, cleaning performance, avoidance of obstruction(safety), and operation noise. A few commercially available ACR products are collected and tested in the evaluation platform and compared against the performance evaluation standards formulated.

  • PDF