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Abstract 

No-load speed is an important performance factor for the safe operation of hydropower systems. In turbine design, 
the manufacturers must conduct several model tests to calculate the accurate value of no-load speed for the complete 
range of operating conditions, which are expensive and time-consuming. The present study presents steady and unsteady 
methods for calculating no-load speed of a Francis turbine. The steady simulations are implemented using a commercial 
flow solver and an iterative algorithm that relies on a smooth relation between turbine torque and speed factor. The 
unsteady method uses unsteady RANS simulations that have been integrated with a user subroutine to compute and 
return the value of runner speed, time step and friction torque. The main goal of this research is to evaluate and compare 
the two methods by calculating turbine dynamic parameters for three test cases consisting of high and medium head 
Francis turbines. Overall, the numerical results agreed well with experimental data. The unsteady method provided more 
accurate results in the opening angle range from 20 to 26 degrees. Nevertheless, the steady results showed more 
consistency than unsteady results for the three different test cases at different operating conditions. 

Keywords: No-load speed, runaway speed, Francis turbine, steady-state simulation, unsteady state simulation. 

 

1. Introduction 
Hydropower manufacturers must guarantee the performance of the turbine runner at the end of the design process. Hence tests are 

performed on homologous models to demonstrate the guaranteed values of dynamic parameters such as the efficiency, cavitation, 
stability, runaway, and hydraulic axial thrust for the complete range of operating conditions. Among these parameters, runaway speed 
and no-load speed have an essential role in ensuring the safety of a power plant.  

No-load speed is the maximum speed attained during no-load operation of a turbine-generator at maximum head. It is also called 
runaway speed at full gate opening. No-load and runaway conditions happen when the control system fails to close rapidly the vanes 
during a load rejection event, and this failure may lead to dangerous situations. The runner speed rises while there is no generator-load 
to dissipate the runner kinetic energy. Under such circumstances, slim structures such as turbine blades may be deformed due to 
increased centrifugal and hydraulic forces. Consequently, the rotor may become unbalanced and produce vibration, which can lead to 
failure of the entire turbine. Although the runaway and no-load conditions occur far from the turbine design operating condition, they 
constitute plausible events during an emergency situation such as a fault of the control system during emergency shutdown. Thus the 
accurate prediction of runaway speed and no-load speed at different wicket gate angles is necessary to ensure the structural integrity of 
turbine components and the safety of the hydropower plant. 
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An accurate value of no-load speed is usually obtained from model tests, which are performed by the turbine manufacturers. 

Experimental tests are expensive and time-consuming. Thus it is desirable to develop alternative numerical methods for computing no-
load speed of prototype turbines. For this purpose, hydro acoustic models are fast and robust, and allow simulating the dynamic 
behaviour of the complete hydropower plant. Nicolet [1] used a 1D hydro acoustic method for modelling the hydraulic components of 
a hydropower plant in both transient and steady modes. The model could show the evolution of turbine dynamic parameters such as 
angular speed, pressure and discharge during a load rejection event. However, this method depends on experimental data. For instance 
it requires the turbine hill-chart to determine hydraulic resistance and inductance needed in transient simulations. 

Over the past two decades, industrial computational fluid dynamics (CFD) has been applied for solving difficult engineering 
problems because of computational capacity increase and numerical techniques advancements. Vu [2] used steady-state stage 
computations for accurate prediction of efficiency characteristics of a Francis turbine near its best efficiency point. He also 
showed steady-state simulations to be a highly effective methodology for comparing global draft tube performance for nearby 
design operating points [3]. Melot [4] performed steady-state stage simulations with RANS solver in order to compute the static 
stresses at speed no-load conditions. The computational domain included the casing, stay vane and runner passage and draft tube. 
The results were in good agreement with on-site strain gauge measurements. He concluded that the steady-state methodology is 
robust and flexible enough to be used in different projects under no-load condition during the design phase. Hosseinimanesh [5] 
used a methodology based on the steady-state RANS flow simulations in order to calculate no-load speed. The results showed 
good agreement with experiments. 

In hydro turbines, unsteady CFD simulations have been used for analyzing highly turbulent flows at off-design conditions and 
transient processes. The results showed the existence of unsteady flow phenomena such as vortex break down, rotor-stator 
interaction and vortex shedding inside flow passage [6-9]. Kolšek [10] used unsteady flow simulations with the standard k-ε 
turbulence model to predict the angular speed, axial force and pressure at selected points during the shut-down of an axial water 
turbine. Nicolle [11] obtained the loading on the blades in a 3D transient numerical simulation of a hydraulic turbine during the 
start-up phase. The unsteady simulations included wicket gate motion and angular speed variation algorithms. Cherny [12] studied 
the transient behavior of Francis turbine during runaway using the unsteady stage simulations. He developed an approach, 
consisting of a one-dimensional water hammer calculation for the penstock and 3D unsteady periodic stage simulation for the 
turbine. The results showed that a periodic stage approach ignored the effects of the runner-stator interaction and damped the 
vortex rope in the draft tube. Li [13] simulated the no-load condition at 9 wicket gate angles for a Francis turbine with the RNG k-
ε turbulence model. However, very little details were given about the results and numerical methods used. He reported the 
presence of intense swirling flow at the draft tube inlet, and secondary and transverse flows in the runner.  

The present paper, which is an extension to the study presented at the 27th IAHR Symposium on Hydraulic Machinery and 
Systems [5], applies steady and unsteady RANS methodologies to accurately estimate turbine no-load speed and runaway in 
Francis turbines. The unsteady and steady methods are compared on three test cases over a range of operating conditions in order 
to introduce a robust methodology. The numerical results are validated using data obtained during model test measurements 
carried out by Andritz Hydro. 

2. Computational aspect 
2.1 Geometry and mesh description 

The numerical study is performed on three test cases that include medium and high head Francis turbines in order to evaluate 
the capability of the proposed methodology. The high head Francis turbine comprises 20 stay vanes and guide vanes, 15 runner 
blades and draft tube. The medium head Francis turbine consists of 20 stay vanes and guide vanes, 13 runner blades and draft tube. 
The computational domain for all test cases encompasses a distributor channel (one stay vane, one wicket gate), a runner passage 
(hub, shroud, blade) and the draft tube as can be seen in Fig. 1 for test case 1. The summary of turbine characteristics is shown in 
Table 1. Test cases 2 and 3 consist of the same geometries for all components except the runner blade. 

 
Table 1 Test case specifications. 

 Runner type Blades Wicket gates Stay vanes 
Case 1 Medium head Francis 

turbine 
1/13 1/20 1/20 

Case 2 High head Francis 
turbine 

1/15 1/20 1/20 

Case 3 High head Francis 
turbine 

1/15 1/20 1/20 

 
The geometries and meshes of the components were generated using Andritz design tools. Multi-bloc-structured meshes for 

runner channel and draft tube, and hybrid meshes in a single channel for the wicket gate and stay vane were used. For example, 
Fig. 1 shows the computational mesh for each component for test case 1. The complete computational domain of test cases 1, 2 
and 3 comprised 554k, 811k, and 813k mesh nodes respectively, as detailed in Table 2. 
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Table 2 Number of nodes for simulation domains. 
 

 Stay vane & wicket 
gate 

Runner blade Draft tube  

Mesh 
type 

Hexahedra and prisms Hexahedra Hexahedra Total 

Case 1 167k 144k 243k 554k 
Case 2 170k 435k 206k 811k 
Case 3 170k 437k 206k 813k 

 

 
Fig. 1 Mesh for components (test case 1). 

 
 

 

 
Fig. 2 Geometry and boundary conditions of computational domains (test case 1). 

 

2.2 Numerical set-up 
In the present study, the runaway speed is calculated by performing steady and unsteady Reynolds averaged Navier-Stokes 3D 
calculations at different operating conditions using Ansys-CFX 14 commercial solver. The Reynolds-averaged Navier-Stokes 
equations (RANS) are given by  
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where 𝑈 is the average velocity (m/s), ρ is the fluid density (kg/m3), f is the body force per unit mass of fluid (N), 𝜇𝜇 is the 
dynamic viscosity of water (N s/m2), 𝑃𝑃 is the average pressure (N/m2), and 𝜌𝜌𝑢𝑢𝑖

,𝑢𝑢𝑗
,����� is the Reynolds shear stress (N/m2), which 

can be written based on the Boussinesq hypothesis [14] as:  
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where 𝑘𝑘 = 1
2�𝑢𝑢𝑖

,𝑢𝑢𝑖
,������ is the turbulent kinetic energy, and 𝛿𝛿𝑖𝑖𝑖𝑖  is the Kronecker delta, 𝜇𝜇𝑡𝑡 is the turbulent viscosity. 

The standard k-ε turbulence model is applied for treating turbulence. The standard k-ε model is known as a reliable and robust 
turbulence model for simulating high Reynolds number flows in Francis turbines. Galvan's [15] investigation on the steady state 
swirling flow in a draft tube showed that the standard k-ε turbulence model demonstrates good balance between reliable performance 
and computational cost. 

The standard k-ε model is based on two transport equations, one for turbulent kinetic energy k, and the other for the turbulent 
dissipation ε. The transport equations for turbulent kinetic energy, k, and its dissipation rate, ε, are written as: 
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The standard k-ε model equations include the empirical constants 𝜎𝜎𝑘𝑘=1.0, 𝜎𝜎𝜀𝜀=1.3,𝐶𝐶𝜀𝜀1 = 1.44, and 𝐶𝐶𝜀𝜀2=1.92.  
The turbulent viscosity is expressed by: 

 
𝜇𝜇𝑡𝑡 = 𝜌𝜌𝐶𝐶𝜇𝜇

𝑘𝑘2

𝜀𝜀
      (7) 

where 𝐶𝐶𝜇𝜇 =0.09 is a constant number. 
The momentum and turbulent advection equations have been discretized using the high-resolution scheme and first-order 

scheme, respectively. The steady stage simulations were performed using one distributor channel as a stationary component and a 
runner blade passage as a rotating component in order to improve the computation cost. A stage interface was used for connecting 
the runner and distributor channel, and also the runner and draft tube modeled in distinct frames of reference. Radial runner blade 
passage interfaces were connected through fully matching rotational periodicity model. The scalable wall function was used, and 
mesh densities were chosen such that the mean value of y+ remains in the range recommended by the flow solver. The inlet 
boundary condition was set to the total pressure associated to the turbine net head. The outlet boundary condition was specified as 
zero-averaged static pressure. No-slip boundary condition was imposed for all solid walls.  

 

2.3 Methodologies 

2.3.1 Steady state method 
The steady state methodology is based on the hypothesis that the turbine torque is a smooth function of the speed factor. In order to find 
runaway and no-load speed, we have to find the zero of the function. A general pseudo-code of the proposed methodology is shown in 
algorithm 1. The first step consists in generating meshes from parametric geometry descriptions of each component. Then the 
numerical set-up is implemented as described in the previous section for the selected wicket gate angle. In step 3, we initialize the 
simulations for two operating point speed factors,  𝑁𝑁𝑒𝑒𝑒𝑒,1  and 𝑁𝑁𝑒𝑒𝑒𝑒,2 with best efficiency point speed value and 1.3 times of the same 
value, respectively. Then steady stage computations are performed for those points. In step 5 the blade torques 𝑇𝑇1 ,  𝑇𝑇2, and power factor 
𝑃𝑃𝑒𝑒𝑒𝑒 ,2 are derived from the converged simulations. Then we initialize the loop control value to 2 and start to compute the no-load speed 
in an iterative way as follows. 
At the beginning, when  𝑛𝑛 = 2, there are only two known points, namely �𝑁𝑁𝑒𝑒𝑒𝑒,1,𝑇𝑇1� and �𝑁𝑁𝑒𝑒𝑒𝑒,2,𝑇𝑇2�. If the two points have the same 
sign for the torque, we use the secant method that passes a line through two points, and takes where it intersects abscissa as next point. 
Otherwise, we use the false position method. If 𝑛𝑛 > 2, there are many known points �𝑁𝑁𝑒𝑒𝑒𝑒,1,𝑇𝑇1�, … , �𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛,𝑇𝑇𝑛𝑛�, which lead to more 
available methods to estimate 𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛+1 such that  𝑇𝑇𝑛𝑛+1 would be equal to zero. The simplest method is to use the last two points 
�𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛 ,𝑇𝑇𝑛𝑛−1� and �𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛,𝑇𝑇𝑛𝑛�, and to compute 𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛+1 using again the secant method until two points of unlike torque sign are 
obtained. Afterward, the best choice is to use the false position method. This approach is proved to be efficient for calculating runaway 
speed. 

In order to do fewer iterations of the main loop in algorithm 1, and to do fewer numerical simulations with Ansys CFX, some 
attempts were done to use more than the last two points, for example, by using a linear regression through the last three or four points 
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or quadratic fitting of the last three points. These more complex approaches have not shown any significant advantage over the simple 
2 point method. 

The process is considered to have converged, and 𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛 is considered as the no-load speed if one of the following conditions is 
satisfied. 

 
• �𝑁𝑒𝑒𝑒𝑒,𝑛𝑛− 𝑁𝑒𝑒𝑒𝑒,𝑛𝑛−1�

𝑁𝑒𝑒𝑒𝑒,𝑛𝑛−1
< 2 % for the two last points with different torque sign.  

• The value of power factor �𝑃𝑃𝑒𝑒𝑒𝑒,𝑛𝑛  
∗ � is less than 0.01. 

Otherwise, we iterate, and compute the next operating condition, or stop if the loop control value n reaches the maximum value. 
Moreover, at each steady state simulation, the convergence tolerances of all main primitive variables were set to 10E-5 on the root 
mean square (RMS) residuals. Besides, the quantities of torque and inflow were tracked during simulation at monitoring points. 
Whenever their averaged values became steady, the simulation was considered to have converged. 

 
 

Algorithm 1 Steady state methodology algorithm for no-load speed computing 

Input: Wicket gate angle 
Output: Runaway speed 
1: Generate meshes 
2: Numerical set-up 
3: Initialize: Select speeds of two operating conditions 𝑁𝑁𝑒𝑒𝑒𝑒,1, 𝑁𝑁𝑒𝑒𝑒𝑒,2 
4: Perform steady simulation for these two selected operating conditions 
5: Compute torques 𝑇𝑇1 , 𝑇𝑇2, power factor 𝑃𝑃𝑒𝑒𝑒𝑒,2 from steady simulation results 
6: Set 𝑛𝑛 = 2 
7: While Simulation not converged do Steps 7.1-7.4 

7.1: From previous points �𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛,𝑇𝑇𝑛𝑛�, �𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛−1,𝑇𝑇𝑛𝑛−1�, … ,  compute 
the next operating condition at 𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛+1 
7.2: Perform steady simulation at 𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛+1 
7.3: Derive torque 𝑇𝑇𝑛𝑛+1and power coefficient 𝑃𝑃𝑒𝑒𝑒𝑒 ,𝑛𝑛+1 
7.4: Set 𝑛𝑛 = 𝑛𝑛 + 1 

8:   𝑁𝑁𝑒𝑒𝑒𝑒,   𝑛𝑛𝑐𝑐−𝑙𝑐𝑐𝑎𝑒𝑒 = 𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛      
 

2.3.2 Unsteady method 
In this method, an unsteady simulation is carried out at specific operating points until the turbine reaches the no-load condition. 

For unsteady simulation, the operating points are calculated using the angular momentum equation for the rotating mass as 
follows: 

 
𝑇𝑇 − 𝑇𝑇𝑔 = 𝐼𝐼𝑧𝑧

𝑒𝑒𝜔
𝑒𝑒𝑡𝑡

                                              (8) 
 

Here T  denotes the torque of turbine hydraulic force (Nm), 𝑇𝑇𝑔 is the torque of the electromagnet or payload torque (Nm), 
 Iz is the moment of inertia of the runner (kgm2), and ω is the runner angular speed (rad/s). When a load rejection event occurs 
within a hydropower plant, the electromagnetic torque instantaneously drops to zero (𝑇𝑇𝑔 = 0), and the angular speed of the runner 
starts to rise monotonically. However, the rate of increase in angular speed eventually decreases because of hydraulic losses in the 
hydraulic system. Finally, the turbine angular speed reaches a maximum value, called the no-load speed. Under such 
circumstances, the runner moment tends to zero because of the balance between hydraulic and drag forces acting on the turbine.  

Algorithm 2 presents the unsteady methodology for estimating the runaway and no-load speed in Francis turbines. The steps 
from 1 to 4 are similar to the steady state methodology. We similarly generate meshes and implement the numerical set-up, but 
perform the steady stage simulation only at the speed factor of the best efficiency point 𝑁𝑁𝑒𝑒𝑒𝑒,1. In step 5 the blade torque 𝑇𝑇1 is 
derived from the converged simulations. Then we initialize the loop control value to 2 and start to perform an unsteady stage 
simulation during which the operating points 𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛, are updated by  

 
𝜔𝑛𝑛 =  𝜔𝑛𝑛−1 +  𝑇𝑛𝑛∆𝑡𝑡

𝐼𝑧
                                               (9). 

 
Equation (9) is derived from eq. (8) by a first order explicit discretization. In eq. (9), ∆𝑡𝑡 represents a time step (s) that is adjusted 
automatically by eq. (10) based on the runner angular speed variation during no-load simulations:  
 

∆𝑡𝑡 =  𝑀
𝜔 ∙ 𝑎

                     (10) 
 

where 𝜔 (rad/s) is the runner angular speed, a=57.2958 deg/rad is a constant number. Furthermore,  𝑀 =4° is a constant 
number corresponding to the angular variation in degrees at each time step. 
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All processes in Algorithm 2 are implemented using the commercial flow solver Ansys CFX. In simulations, the flow solver 
integrates a user subroutine written in Fortran 77 in order to compute and return the value of angular velocity, time step and 
friction torque.  
For the unsteady computation to be considered converged at the no-load condition, the following conditions must be satisfied: 
 

• �𝑁𝑒𝑒𝑒𝑒,𝑛𝑛− 𝑁𝑒𝑒𝑒𝑒,𝑛𝑛−1�
𝑁𝑒𝑒𝑒𝑒,𝑛𝑛−1

 < 2 %  

• � 𝑃𝑃𝑒𝑒𝑒𝑒,𝑛𝑛
𝑃𝑃𝑒𝑒𝑒𝑒,𝐵𝐵𝐵𝐵𝐵𝐵

� < 1 % 

Otherwise, we continue unsteady simulation for the next operating condition, or stop if the loop control value n reaches the 
maximum value.  

 

 

 
 

2.3.3 Friction torque 
In eq. (8), the torque is calculated by 
 
    𝑇𝑇 = 𝑇𝑇𝑡𝑡(𝑡𝑡) − 𝑇𝑇𝑟𝑟𝑐𝑐(𝑡𝑡)        (11) 
 
where 𝑇𝑇𝑡𝑡 , which is the turbine torque caused by pressure and viscous forces on the runner blade, is obtained from steady 
simulation results. The 𝑇𝑇𝑟𝑟𝑐𝑐  term, which is the friction torque on the turbine crown and band, is opposing the driving torque during 
no-load condition. The friction torque is calculated as follows: 
 
    𝑇𝑇𝑟𝑟𝑐𝑐 = 𝑇𝑇𝑟𝑟𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 + 𝑇𝑇𝑟𝑟𝑐𝑐,𝑏𝑎𝑛𝑛𝑒𝑒 .       (12) 
 
The friction torques 𝑇𝑇𝑟𝑟𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛  and 𝑇𝑇𝑟𝑟𝑐𝑐,𝑏𝑎𝑛𝑛𝑒𝑒 have an impact on the crown and band sections, respectively. The friction torque 
impact on the crown surface is estimated using a model that was established based on the approximation of a smooth rotating disk 
in a housing with turbulent flow[16]. The friction torque on the crown is estimated by 
 
     𝑇𝑇𝑟𝑟𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 =  𝐶𝑚𝜌𝜔2𝑐𝑐𝑐𝑟𝑜𝑤𝑛𝑛5

2
        (13) 

 
where 𝜔 is the runner angular velocity (rad/s), 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛   is the runner leading edge radius at the crown, 𝜌𝜌  is the water density 
(kg/m3), and 𝐶𝐶𝑚𝑚 is the torque coefficient, defined as 
 

    𝐶𝐶𝑚𝑚 = 0.0311 � 1
𝑅𝑅𝑒𝑒0.2� �

𝑐𝑐𝑐𝑟𝑜𝑤𝑛𝑛
𝐺𝐴𝑃𝑃𝐶

�
0.1

       (14) 
 
where GAPC is the width of the runner crown clearance (m), and Re is the Reynolds number, which is equal to 
 
    𝑅𝑅𝑅𝑅 = 𝜔𝜌𝑐𝑐 𝑐𝑟𝑜𝑤𝑛𝑛

2

𝜇𝜇
         (15) 

 
In order to calculate the band torque, the band rotation was approximated by two concentric cylinders with the inner cylinder 
rotating with angular velocity 𝜔, and the outer cylinder at rest. In the present work, Bilge’s equation [17], which is an empirical 
relation of torque coefficient of coaxial cylinders, was applied for calculating the runner torque as follow: 
 

Algorithm 2 Unsteady state methodology algorithm for no-load speed computing 

Input: Wicket gate angle 
Output: Runaway speed, inlet flow rate, pressure magnitude on the blade 
1: Generate meshes 
2: Numerical set-up 
3: Select speed of an operating conditions 𝑁𝑁𝑒𝑒𝑒𝑒,1  
4: Perform steady simulation for the selected operating condition 
5: Compute torque 𝑇𝑇1,  from steady simulation results 
6: Set 𝑛𝑛 = 2 
7: While Simulation not converged do Steps 7.1-7.4 
    7.1: From previous point �𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛−1,𝑇𝑇𝑛𝑛−1� compute the next operating condition at 𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛 
    7.2: Continue unsteady simulation at 𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛 
    7.3: Compute torque 𝑇𝑇𝑛𝑛 and power factor 𝑃𝑃𝑒𝑒𝑒𝑒,𝑛𝑛 
    7.4: Set 𝑛𝑛 = 𝑛𝑛 + 1 
8:   𝑁𝑁𝑒𝑒𝑒𝑒,   𝑛𝑛𝑐𝑐−𝑙𝑐𝑐𝑎𝑒𝑒 = 𝑁𝑁𝑒𝑒𝑒𝑒,𝑛𝑛      
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    𝑇𝑇𝑟𝑟𝑐𝑐,𝑏𝑎𝑛𝑛𝑒𝑒 =  𝐶𝑛𝑛𝜌𝜋𝜔
2𝑐̅𝑐𝑏𝑎𝑛𝑛𝑒𝑒

4 ∙𝑙𝑖𝑖
2

          (16) 
 
where 𝑙𝑖𝑖  is the band seal length, and 𝑟̅𝑟𝑏𝑎𝑛𝑛𝑒𝑒 is the average band radius. The moment coefficient for turbulent flow regimes with 
𝑅𝑅𝑅𝑅 > 104 is defined as 
 
     𝐶𝐶𝑛𝑛 = 0.065( 𝐺𝑎𝑝

𝑐̅𝑐𝑏𝑎𝑛𝑛𝑒𝑒
)0.3(𝑅𝑅𝑅𝑅)−0.2       (17) 

 
where 𝑅𝑅𝑅𝑅 =  𝜌𝜔𝐺𝑎𝑝𝑐̅𝑐𝑏𝑎𝑛𝑛𝑒𝑒 

𝜇𝜇
 is the Couette Reynolds number, Gap is the width of the runner band clearance, and 𝑟̅𝑟𝑏𝑎𝑛𝑛𝑒𝑒 is the 

average radius of the band. 
 
 

3. Results 
3.1 Engineering parameters 

The steady and unsteady approaches were applied on three test cases in order to assess the accuracy of the proposed 
methodologies. For each test case, we numerically calculated the dynamic parameters such as the speed factor Ned, discharge 
factors Qed, and power factor Ped, defined by [18], at no-load condition for different opening angles. The numerical results were 
compared with experimental measurements. 

Figure 3. (left) compares the experimental and numerical speed factors at no-load condition for different wicket gate angles. 
The unsteady approach led to more accurate estimates of the speed factor at wicket gate angles between 20 and 26 degrees. For 
instance, in case 2, the maximum discrepancies between CFD results and experiments were 3.42% and 3.95% in the unsteady and 
steady methods, respectively at the wicket angle of 26 degrees. Nevertheless, it is observed in Fig. 3 that the steady method 
resulted in more accurate predictions at wicket gate angle of 15 degrees compared to unsteady. The maximum differences between 
numerical and experimental speed factors for all cases are shown in Table 3.  

Furthermore, Fig. 3 (right) shows the numerical and experimental results of the discharge factors at no-load condition. In Fig. 
3, for case 1, the steady and unsteady results agreed well with experimental data. In a similar manner to the speed factor results, 
the unsteady method generates more accurate discharge factors in the opening angle range from 20 to 26 degrees for cases 2 and 3. 
For example, in case 2, the maximum discrepancies were 4.8% and 6% in the unsteady and steady methods for wicket angle of 26 
degrees, respectively. 

Figure 4. compares the no-load speed lines, which were computed from steady, unsteady and experimental methods. For all 
test cases, the no-load speed lines follow the same trend, but a little deviation is observed for higher speed factors. For case 1, the 
steady and unsteady lines are very close to each other. For case 2 and 3, the steady lines are closer to experiments. 

The unsteady method was not as accurate as the steady method in its prediction for wicket gate angles below 20 degrees. In 
order to explain the prediction error for those angles, the flow physics, computed by the steady and unsteady simulations for one 
such operating condition, are analyzed and compared. 

Figure 5. shows the distribution of normalized axial velocity, surface streamlines and velocity vectors in a plane section of the 
draft tube, computed through steady and unsteady simulations, at a wicket gate opening of 15 degrees for case 2. The same overall 
flow behavior is observed in the draft tube for both methods. In Fig. 5, the turbine discharge enters near the draft tube cone wall. 
On the other hand, a mainly axial flow returns towards the runner in the cone center. Furthermore there is a flow moving towards 
the draft tube outlet. Comparison between simulations shows that the unsteady simulation calculated a backflow region with a 
higher velocity near the draft tube cone and an entering flow with a lower velocity near the cone wall compared to the steady 
simulation. 

Figures 6. and 7 present the surface streamlines and the normalized velocity contours, computed using steady and unsteady 
simulations, at 1 % and 50 % runner blade span, respectively for the same operating point. Fig. 6 (left) shows that a high velocity 
flow passes the turbine passage at 1 % span in the steady simulation. On the other hand, the right part of Fig. 6 shows that low 
velocity vortices have blocked a part of the turbine passage in the unsteady simulation. In Fig. 7 both simulations calculated the 
same flow pattern at 50 % span. Fig. 7 shows that strong axial vortices have blocked the largest part of the inlet runner passage.  

Overall, it can be noted that the unsteady simulation has over predicted the turbine blockage at 1 % span for a wicket gate 
opening angle of 15 degrees. This over prediction caused lower turbine discharge, and no-load speed compared to experimental 
and steady results. This over prediction may be caused by the presence of the stage averaging interface between the runner and 
draft-tube. It is expected to obtain more accurate results by performing unsteady simulations in a fluid domain with a very fine 
meshes and smaller time steps and using a transient rotor-stator interface. 

Generally, from the results, it appears that the no-load speed was well predicted through the proposed methodologies. 
Nevertheless, the engineering parameters, calculated by the steady method display more consistency than the unsteady results for 
the three different test cases at different operating conditions. Hence the steady method can be used as a reliable and precise tool 
for computing runaway and no-load speed in Francis turbines.   
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   Fig. 3 Speed factor Ned & discharge factor Qed vs. wicket gate angles (WG) from CFD and experiments at no-load speed  
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Fig. 4 No-load speed line computed from CFD and experiments 
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Fig. 5 Normalized axial velocity field, velocity vectors and streamlines on a section plane crossing the draft tube in steady 

(left) and unsteady (right) simulations at wicket gate angle of 15 degrees case 2 
 
 

 

   

Fig. 6 Comparison normalized velocity field and 2D streamlines between steady (left) and unsteady (right) simulations at 
wicket gate angle of 15 degrees at 1% span case 2 

 
 
 

   
Fig. 7 Comparison normalized velocity field and 2D streamlines between steady (left) and unsteady (right) simulations at 

wicket gate angle of 15 degrees at 50% span case 2  
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Table 3 Maximum discrepancy between the numerical and experimental speed factors. 
Case Wicket gate opening  Discrepancy 

  Steady state  Unsteady state 
1 22°  5.65 % 5.99% 
2 26° 3.95 % 3.42 % 
3 26° 3.23 % 2.87 % 

 

3.2 Accuracy and convergence analysis of the steady-state algorithm 
In order to analyze the accuracy and convergence properties of the two proposed algorithms, the convergence behavior of the 

steady-state algorithm is further discussed. According to the proposed methodology, steady-state computations are performed at 
operating points that are selected based on the false position method. The computations are stopped when the turbine torque and 
efficiency become small enough. Fig. 8 shows the evolution of the power factor Ped, which corresponds to turbine torque and 
angular speed, for selected operating points. In Fig. 8 (left), the power factor decreases gradually when the speed factor increases 
in runaway speed computations. The points close to the Ned-axis are shown in Fig. 8. (right). They show that when approaching 
runaway speed, a large drop of the power factor occurs for a small increase of the speed factor. For instance, the power factor 
decreases by 335% between E1 and E2, while the speed factor simultaneously increases only by 0.09%, as detailed in Table 4.  

The sudden drop of the power factor near the horizontal axis illustrates the highly non-linear behavior of the flow near the no-
load condition. This sharp deviation in the power factor reduces the capacity of the steady-state algorithm to precisely determine 
the speed coefficient at which torque becomes zero. This observation justifies the choice made in the present study, whereby 
results for the power factor are bounded within a range from -0.01 to 0.01 around zero, which was determined suitable for 
predicting the runaway speed with an adequate level of accuracy.  

 
 Table 4 Maximum variation of dimensionless parameters near the Ned-axis. 

Wicket gate opening Points Ned Ped 
15° E1-E2 0.09 % -335 % 
18° F1-F2 0.16 % -193 % 

 

  
Fig. 8 Power factor Ped vs. speed factor Ned for test case 2 in steady simulations. 

 

3.3 Convergence of the unsteady simulation algorithm 
 
Contrary to the steady-state case, the algorithm used in the unsteady methodology does not require to accurately determine the 

condition for which torque becomes zero. The algorithm must, however, detect a stabilization of the speed factor. The flow 
behavior being highly unsteady, the level at which stabilization occurs may vary depending on the starting point of the simulation. 
To test the sensitivity of the unsteady solution to its starting point, two different simulations were performed with the different 
starting points on the second case at the opening angle of 15 degrees. The main goal was to evaluate the repeatability of the 
unsteady methodology. First unsteady simulation started from a converged steady method solution, while the second unsteady 
simulation began from the best efficiency operating point. 

Figure 9. shows the evolution of the speed factor during the first simulation. In Fig. 9, the no-load speed was primarily 
calculated by steady method that started from point A (Ned =0.35), and converged to point B (Ned=0.41) through five steps. 
Afterward, an unsteady simulation started from point B, which finally converged to point C (Ned = 0.398). The difference of 4.8 
percent was found between speed factors calculated by steady and unsteady methods in Fig. 9.  

Figure 10. shows the evolution of speed factors during the second simulation. At the first step, a steady state simulation was 
performed at point D, the best efficiency operating point, in order to obtain an initial solution. After convergence of the steady 
simulation, the unsteady simulation is started from E with speed factor of best efficiency operating point. In Fig. 10, the speed 
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E1  
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factor increased at the beginning of unsteady simulation due to load rejection. Eventually, it decreased and converged to point F 
(Ned=0.399). The discrepancy between speed factors in the first and second unsteady simulations was 0.25 %. This little 
discrepancy between unsteady simulations with different starting points shows that the applied unsteady methodology is fairly 
successful in reproducing the results.  
 

 
Fig. 9 Speed factor Ned vs dimensionless accumulated time step t* by steady and unsteady methods 

 
 

 

 
Fig. 10 Speed factor Ned vs dimensionless accumulated time step t* by unsteady method 

 

4. Conclusion 
In a runner design process, the accurate determination of runaway and no-load speed is important to ensure the safe operation 

of the hydropower plant. Hence this paper evaluated a steady and an unsteady method for computing the no-load speed of Francis 
turbine runners at different opening angles. The steady method was faster and simpler than the unsteady method because it used 
steady-state stage computations and a simple algorithm based on the smooth relation between torque and speed. The unsteady 
method relied on unsteady state computations in a CFD flow solver that integrated a user subroutine in order to retrieve the value 
of angular velocity during simulation. The unsteady simulations depended on significant computational effort to compute accurate 

A 
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values of runaway speed due to difficulties related to unsteady turbulent flow modelling and instabilities.  
Two methods were assessed by calculating turbine dynamic parameters: speed factor, discharge factor and power factor during 

runaway speed for three test cases consisting of high and medium head Francis turbines. Overall, the numerical results agreed well 
with experimental data. The unsteady method provided more accurate results in the opening angle range from 20 to 26 degrees for 
all cases. However, the unsteady method was not successful for wicket gate angles lying outside this range. For instance, the study 
of flow simulation results showed that the unsteady simulation over predicted the flow blockage in the turbine passage at a wicket 
gate opening angle of 15 degrees in case 2.  

Furthermore, some parts of the error corresponded to the stage interface model, used for connecting the rotating and stationary 
parts in the steady and unsteady simulations. The stage interface model neglected some transient effects because of performing the 
circumferential averaging of the fluxes at the interface. A transient rotor-stator model, which simulates the relative motion 
between components on each side of the interfaces, may increase the no-load speed prediction accuracy. 

Furthermore, in the present study very little discrepancy was found between unsteady simulations with different starting points 
for the same wicket gate angle in case 2. It showed the repeatability of the applied unsteady methodology in order to compute the 
no-load speed. 
Generally, the steady results showed more consistency than unsteady results in the three different test cases at different operating 
conditions. In addition, there were difficulties related to the unsteady simulation convergence, which led to more expensive 
computational efforts compared to steady method. Hence the steady method can be applied by design engineers as a reliable tool 
in order to compute runaway speed in a wide range of operating conditions with an adequate level of accuracy.  
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Nomenclature 
 
𝐶𝐶𝜀𝜀1 
𝐶𝐶𝜀𝜀2 
𝐶𝐶𝜇𝜇 

𝐶𝐶𝑚𝑚 

𝐶𝐶𝑛𝑛 

D 
f 

GAPC 

Gap 
H 
𝐼𝐼𝑧𝑧 

k 

𝑙𝑖𝑖 

M 

n 

Ned 
P 

𝑃𝑃𝑒𝑒𝑒𝑒,𝑛𝑛  
∗  
Ped 
Qed 

 

Constant number(=1.44) 
Constant number(=1.92) 
Constant number(=1.92) 

Torque coefficient= 0.0311 � 1
𝑅𝑅𝑅𝑅1

0.2� �
𝑐𝑐𝑐𝑟𝑜𝑤𝑛𝑛
𝐺𝐴𝑃𝑃𝐶

�
0.1

 

Torque coefficient= 0.065( 𝐺𝑎𝑝
𝑐̅𝑐𝑏𝑎𝑛𝑛𝑒𝑒

)0.3(𝑅𝑅𝑅𝑅)−0.2 
Turbine throat diameter (m) 
Body force of unit mass fluid (N) 
Runner crown clearance (m) 
Width of the runner band clearance 
Turbine net head (m) 
Moment of inertia of the runner (kgm2) 

Turbulent kinetic energy(= 1
2 �𝑢𝑢𝚤𝚤

,𝑢𝑢𝚤𝚤
,�����) 

Band seal length  
Constant number corresponding to the angular 
variation in degrees at each time step (=4) 
Loop control value 
Speed factor, Energy Units 
Average pressure (N/m2) 
Dimension less Power factor, (= 𝑃𝑃𝑒𝑒𝑒𝑒,𝑛𝑛 

𝑃𝑃𝑒𝑒𝑒𝑒,𝐵𝐵𝐵𝐵𝐵𝐵
)  

Power factor, Energy Units 
Discharge Factor 
 

𝑟̅𝑟𝑏𝑎𝑛𝑛𝑒𝑒 
𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  

𝑅𝑅𝑅𝑅 
𝑅𝑅𝑅𝑅1 
𝑅𝑅𝑅𝑅2 

T 

𝑇𝑇𝑟𝑟𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 
𝑇𝑇𝑟𝑟𝑐𝑐,𝑏𝑎𝑛𝑛𝑒𝑒 

𝑇𝑇𝑔 
𝑡𝑡∗ 
𝑈 
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟  
𝑉𝑉∗ 
ρ 

𝜌𝜌𝑢𝑢𝚤𝚤
,𝑢𝑢𝚥𝚥

,����� 
f 
𝛿𝛿𝑖𝑖𝑖𝑖 
𝜎𝜎𝑘𝑘 
𝜔 
𝜎𝜎𝜀𝜀 
  𝜇𝜇𝑡𝑡 
𝜇𝜇 
 

Average band radius 
Runner leading edge radius at the crown 
Reynolds number (=UbDh/ν) 

Reynolds number(= 𝜔𝜌𝑐𝑐 𝑐𝑟𝑜𝑤𝑛𝑛
2

𝜇𝜇
) 

Reynolds number(=  𝜌𝜔𝐺𝑎𝑝𝑐̅𝑐𝑏𝑎𝑛𝑛𝑒𝑒 
𝜇𝜇

) 
Turbine torque(Nm) 
Friction torques on crown(= 𝐶𝑚𝜌𝜔2𝑐𝑐𝑐𝑟𝑜𝑤𝑛𝑛5

2
) 

Friction torque on band(=  𝐶𝑛𝑛𝜌𝜋𝜔
2𝑐̅𝑐𝑏𝑎𝑛𝑛𝑒𝑒

4 ∙𝑙𝑖𝑖
2

) 
Torque of the electromagnet(Nm) 
Dimensionless accumulated time step 
Average velocity (m/s) 
Reference velocity, m/s (= �𝑔𝑔𝑔𝑔 ) 
Normalized velocity (= 𝑉𝑉 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟⁄ ) 
Fluid Density (kg/m3) 
Reynolds shear stress (N/m2) 
Body force of unit mass fluid (N) 
Kronecker delta 
Constant number (=1.0) 
Runner angular speed (rad/sec) 
Constant number(=1.3)  
Turbulent viscosity 
Dynamic viscosity of water (N s/m2) 
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